
PyLlama
Release 1.0

May 03, 2022

Contents:

1 Getting started 1
1.1 Overview . 1
1.2 Code organisation . 2
1.3 How to install . 2
1.4 Library for cholesterics . 2

2 Creating a multilayer stack 3
2.1 From scratch: the technical way . 4
2.2 With the Model class: the flexible way . 5
2.3 With the Spectrum class: the automated way . 6

3 Calculating the reflection and transmission spectra of a stack 9
3.1 From scratch: the technical way . 9
3.2 With the Model class: the flexible way . 12
3.3 With the Spectrum class: the automated way . 13

4 Quick cholesteric tutorial 17

5 Choosing which matrix method to use 23

6 Creating a custom Model class 25
6.1 Anatomy of the Model class . 25
6.2 Creating a custom child . 26
6.3 Pairing the custom child with Spectrum . 27

7 Acknowledgements 29
7.1 Authors . 29
7.2 Referencing . 29
7.3 Financial support . 29

8 Documentation 31

9 Indices and tables 47

Python Module Index 49

Index 51

i

ii

CHAPTER 1

Getting started

1.1 Overview

PyLlama enables to calculate the reflection and transmission spectra of an arbitrary multilayer stack whose layers
are made of dispersive or non-dispersive, absorbing or non absorbing, isotropic or anisotropic materials. The layers
are assumed to be perpendicular to the 𝑧 axis and homogeneous and infinite in the 𝑥 and 𝑦 directions. The stack is
sandwiched between an entry and an exit semi-infinite isotropic media, such as air.

Fig. 1.1: Schematic of the axes and the multilayer stack between entry and exit semi-infinite media.

We use two different matrix method approaches to calculate the reflectance and transmittance of a multilayer stack: the
transfer matrix method and the scattering method. Both methods are based on the same optical principles: continuity
of the electric and magnetic fields at the interfaces between the layers (referred to as “transition”) and phase build-up
inside the layers (referred to as “propagation”). We describe the underlying theory in our paper that the user of the
code is invited to read.

1

PyLlama, Release 1.0

1.2 Code organisation

PyLlama is a code that can be used as a package (the user imports the code and uses the implemented classes and
methods) and can be customised (the user writes their own routines to model specific multilayer stacks in form of
children classes).

The code in pyllama.py is organised as follows:

• the three classes Wave, Layer (and its child HalfSpace) and Structure implement the optical calcula-
tions described in our paper. In principle, the user should not modify these classes.

• the class Model and its children contain routines that construct Structure instances through useful routines.
The user should use these classes in scripts (some scripts are available on StackMat’s GitHub repository) and
may also add their own children classes to the code.

• the class Spectrum provides an extra level of automation to calculate full spectra in one command and to
export results in Python-compatible (Pickles) or MATLAB format. The user should use this class in scripts and
may also interface it with their custom child classes of Model.

1.3 How to install

PyLlama requires Python 3 to run. It has been tested with Python 3.6 from Python 3.8. It also requires the following
packages (other versions may work too):

• Numpy version 1.18 to 1.19

• Sympy version 1.4 to 1.6

• Scypy version 1.2 to 1.5

• Matplotlib version 3.2

The file pyllama.py must be downloaded and placed in a location that is in Python’s path. It contains the classes
and function required to build multilayer stacks and calculate their reflectance. In each script, PyLlama must be
imported with:

import pyllama

Custom libraries may be used in interaction with the class Model to construct Structures. The user should ensure
that they have installed all the required libraries.

1.4 Library for cholesterics

The file cholesteric.py is required to work with the class CholestericModel, and the file geometry.py
contains tools to represent cholesterics in 3D plots. If the used wishes to use the class CholestericModel, they
need to import the Cholesteric class with:

import cholesteric

If the user does not wish to use the class CholestericModel, they do not need to download cholesteric.py
nor geometry.py.

2 Chapter 1. Getting started

CHAPTER 2

Creating a multilayer stack

A multilayer stack and by extension a layer is defined for given incident conditions, which are:

• the wavelength of light 𝜆, in nanometers

• the angle of incidence upon the stack 𝜃𝑖𝑛 defined in the entry isotropic semi-infinite medium in the (𝑥𝑧) plane,
in degrees or in radians

• the associated wavevector 𝑘 = (𝑘𝑥, 𝑘𝑦, 𝑘𝑧) = 𝑘0(𝐾𝑥,𝐾𝑦,𝐾𝑧):

– 𝑘0 is the normalised wavevector (𝑘0 = 2𝜋/𝜆)

– 𝐾𝑥 is the 𝑥-component of the normalised wavevector that stays constant throughout the stack (𝐾𝑥 =
𝑛𝑒𝑛𝑡𝑟𝑦 sin(𝜃𝑖𝑛) where 𝑛𝑒𝑛𝑡𝑟𝑦 is the refractive index of the entry isotropic half-space)

– 𝐾𝑦 is its 𝑦-component (that equals to 0 by construction)

– 𝐾𝑧 is its 𝑧-component (𝐾𝑧 = 𝑛𝑒𝑛𝑡𝑟𝑦 cos(𝜃𝑖𝑛) in the entry semi-infinite isotropic medium)

There are three ways of creating a multilayer stack with PyLlama:

• creating a multilayer stack from scratch with the classes Structure and Layer, and working directly with
classes that handle the optical calculations

• creating multilayer stacks with the abstract class Model and its children, and writing one’s own child class
when a different kind of stack is needed

• using the class Spectrum that provides a higher level of automation to automatically calculate reflection and
transmission across a range of wavelengths

This section explains how to create a multilayer stack and the section Calculating the reflection and transmission
spectra of a stack explains how to calculate their reflectance.

3

PyLlama, Release 1.0

2.1 From scratch: the technical way

A multilayer stack consists in a series of layers sandwiched between an entry and an exit semi-infinite isotropic
media. A layer is represented by the class Layer and the semi-infinite isotropic media are represented by the class
HalfSpace.

The entry and exit semi-infinite isotropic media are instances of the class HalfSpace and are created with:

k0 = 2 * numpy.pi / wl_nm
Kx = n_entry * numpy.sin(theta_in_rad)
Kz_entry = n_entry * numpy.cos(theta_in_rad)
theta_out_rad = numpy.arcsin((n_entry / n_exit) * numpy.sin(self.theta_in_rad))
Kz_exit = n_exit * numpy.cos(theta_out_rad)
epsilon_entry = numpy.array([[n_entry ** 2, 0, 0],

[0, n_entry ** 2, 0],
[0, 0, n_entry ** 2]])

epsilon_exit = numpy.array([[n_exit ** 2, 0, 0],
[0, n_exit ** 2, 0],
[0, 0, n_exit ** 2]])

entry = HalfSpace(epsilon_entry, Kx, Kz_entry, k0)
exit = HalfSpace(epsilon_exit, Kx, Kz_exit, k0)

where:

• n_entry is the refractive index of the entry isotropic medium

• n_exit is the refractive index of the exit isotropic medium

• theta_in_rad is the angle of incidence in the entry isotropic medium in radians

• wl_nm is the wavelength of light, in nanometers

• k0 is the wavevector magnitude

• Kx is the 𝑥-component of the normalised wavevector that stays constant through the stack

• Kz_entry and Kz_exit are the 𝑧-components of the normalised wavevector in the entry and exit isotropic
half-spaces

• epsilon_entry and epsilon_exit are the permittivity tensors of the entry and exit isotropic half-spaces

A multilayer stack whose layers are embedded between the semi-infinite isotropic media entry and exit is then
created with:

Ky = 0
Kz = n_entry * numpy.cos(theta_in_rad)
my_stack_structure = Structure(entry, exit, Kx, Ky, Kz_entry, Kz_exit, k0)

where:

• Ky is the 𝑦-component of the normalised wavevector that is equal to 0 throughout the stack

At this point, my_stack_structure represents two semi-infinite isotropic half-space that sandwich no layer.
Layers are instances of the class Layer and are created with:

my_layer = Layer(epsilon, thickness_nm, Kx, k0)

where:

• k0 is the normalised wavevector

• Kx is the 𝑥-component of the normalised wavevector

4 Chapter 2. Creating a multilayer stack

PyLlama, Release 1.0

• epsilon is the permittivity tensor (3x3 Numpy array) of the layer, which can represent a material that is
isotropic or anisotropic, absorbing or non-absorbing

• thickness_nm is the thickness of the layer in nanometers

The 𝑧-component of the normalised wavevector changes inside the stack and is not defined in the Layer: the partial
waves will be calculated instead.

Then, the layer can be added to the stack with:

my_stack_structure.add_layer(my_layer)

The content of a stack can then be accessed with:

my_stack_structure.entry # access the entry HalfSpace
my_stack_structure.exit # access the exit HalfSpace
my_stack_structure.layers # access the list of Layers in the stack

The functions add_layers(), remove_layer() and replace_layer() also enable the user to construct the
stacks that they want.

Note: 𝑘0 and 𝐾𝑥 stay constant throughout the stack and checks are carried out in the function Structure.
add_layer() to ensure that the user only adds Layers that are compatible with the stack. The user should not
add Layers with my_stack.layers.append(my_layer) as this may lead to impossible situations.

Lastly, the periodicity of the stack can be changed with:

my_stack_structure.N_periods = number_of_periods

The Layers in the list my_stack.layers represent one periodic pattern that is repeated number_of_periods
times in the stack. A multilayer stack made of N repetitions of a periodic unit consisting in layer_a with a permit-
tivity eps_a and a thickness thick_a (in nanometers) and layer_b with a permittivity eps_b and a thickness
thick_b (in nanometers) is defined with:

my_stack_structure = Structure(entry, exit, Kx, Ky, Kz_entry, Kz_exit, k0)
layer_a = Layer(eps_a, thick_a, Kx, k0)
layer_b = Layer(eps_b, thick_b, Kx, k0)
my_stack_structure.add_layers([layer_a, layer_b])
my_stack_structure.N_per = N

The leftmost Layer in the list is located after the entry half-space and the rightmost Layer in the list is located
before the exit half-space. The periodic pattern can include an arbitrary number of layers and we used two layers as
an example.

2.2 With the Model class: the flexible way

Creating Layers from scratch to build up a multilayer stack can become constraining. Instead, pre-defined routines
(Models) allow the user to create particular multilayer stacks such as single slabs, periodic Bragg stacks, isotropic
stacks where each layer has the same optical thickness for a given wavelength, and cholesteric stacks more easily.

The class Model is a general class that gives a blueprint for all its specific children classes: SlabModel,
StackModel, StackOpticalThicknessModel, CholestericModel, etc. “Giving the blueprint” means
that parameters and functions that are common to all model classes are defined in the class Model, and then its chil-
dren classes inherit them, in addition to having their own specific parameters and functions. The user should directly
use the children classes.

2.2. With the Model class: the flexible way 5

PyLlama, Release 1.0

Note: Classes that give the blueprint for their children classes are usually called “abstract classes” and cannot be
instanciated but it is here possible to instanciate Model: it creates a stack with no layer.

A multilayer stack made of N repetitions of a periodic unit consisting in a first layer with a permittivity eps_a and
a thickness thick_a (in nanometers) and a second layer with a permittivity eps_b and a thickness thick_b (in
nanometers) can be represented with StackModel and is defined with:

my_stack_model = StackModel([eps_a, eps_b], [thick_a, thick_b], n_entry, n_exit, wl_nm, theta_in_rad,
N)

where the following parameters are required by all Models:

• n_entry is the refractive index of the entry isotropic medium

• n_exit is the refractive index of the exit isotropic medium

• theta_in_rad is the angle of incidence in the entry isotropic medium in radians

• wl_nm is the wavelength of light, in nanometers

while the lists [eps_a, eps_b] and [thick_a, thick_b] are required specifically by StackModel.

The documentation of the classes SlabModel, StackOpticalThicknessModel and CholestericModel
provide information on which parameters are required to create stacks with these specific classes.

2.3 With the Spectrum class: the automated way

The Spectrum class provides a further level of automation for the user. It is meant for experimentalists who measure
spectra from multilayered samples and want to quickly model their sample. The class Spectrum enables to get a full
spectrum in one go and to export it for MATLAB or Python processing. The creation of a Spectrum is not more
convenient than the creation of a Model but they will differ in their utilisation.

A Spectrum can be created the following way:

my_stack_spec = Spectrum(wl_nm_list, model_type, model_parameters)

where:

• wl_nm_list is a list of wavelengths

• model_type is a string that describes the type of model to use

• model_parameters is a dictionary that contains all parameters needed for the model

For example, to create a Spectrum in the visible for the periodic multilayer stack described in the previous examples,
the input parameters are:

wl_nm_list = range(400, 800)
model_type = "StackModel"
model_parameters = {"eps_list": [eps_a, eps_b],

"thickness_nm_list": [thick_a, thick_b],
"n_entry": n_entry,
"n_exit": n_exit,
"theta_in_rad": theta_in_rad,
"N_per": N}

6 Chapter 2. Creating a multilayer stack

PyLlama, Release 1.0

The documentation of the classes SlabModel, StackOpticalThicknessModel and CholestericModel
provide information on which parameters are required to create the appropriate dictionaries for their associated
Spectra.

Note: Models may have default parameters (for example, when the user does not specify a number of periods
for StackModel, the value is set to 1 automatically), which is specified in their respective documentation. This is
maintained in their associated Spectra: the dictionary of parameters created by the user is merged with a dictionary
of default parameters.

2.3. With the Spectrum class: the automated way 7

PyLlama, Release 1.0

8 Chapter 2. Creating a multilayer stack

CHAPTER 3

Calculating the reflection and transmission spectra of a stack

The section Creating a multilayer stack explains how to create the multilayer stack with three methods, which all
enable to calculate the reflection and transmission spectra of the stack with different level of additional details:

• creating a multilayer stack from scratch with the classes Structure Layer, and working directly with classes
that handle the optical calculations. This method gives direct access to the partial waves inside each layer
of the multilayer stack, to the transfer and scattering matrices, to the multilayer stack’s reflection and
transmission coefficients and to the multilayer stack’s reflectance and transmittance for one wavelength.

• creating multilayer stacks with the abstract class Model and its children, and writing one’s own child class when
a different kind of stack is needed. This method gives direct access to the multilayer stack’s reflectance and
transmittance for one wavelength. Additionally, the layer’s partial waves, the transfer and scattering matrices
and the reflection and transmission coefficients can also be obtained since the Model creates a Structure.

• using the class Spectrum that provides a higher level of automation. This method gives direct access to the
multilayer stack’s reflectance and transmittance for a range of wavelength.

This section explains how to get the reflection spectrum of a multilayer stack which has been created through one of
there three methods, following the tutorials Creating a multilayer stack.

3.1 From scratch: the technical way

When the user follows the method “from scratch” with the class Structure to create a multilayer stack
my_stack_structure, they interact directly with the classes that handle the optics calculation. The Structure
that represents the multilayer stack contains a list of Layers and the entry and exit HalfSpaces (which are chil-
dren of Layer). Layers and HalfSpaces implement the calculation of Berreman’s matrix and of the layer’s
eigenvalues and eigenvectors, used to calculate the layer’s partial waves. These are calculated immediately upon the
creation of the Layer or HalfSpace and can be accessed through:

my_stack_structure.layers[k].D # layer’s Berreman’s matrix
my_stack_structure.layers[k].eigenvalues # layer’s eigenvalues
my_stack_structure.layers[k].eigenvectors # layer’s eigenvectors
my_stack_structure.layers[k].partial_waves # layer’s partial waves

9

PyLlama, Release 1.0

where k is the index of the Layer in the Structure my_stack_structure.

A Structure therefore automatically contains a series of four partial waves per layer, which are used to construct
its transfer matrix or its scattering matrix (for the wavelength that was used to create the Structure). The transfer
and scattering matrices can be calculated the following way:

my_stack_structure.build_transfer_matrix() # transfer matrix
my_stack_structure.build_scattering_matrix() # scattering matrix

Reflection and transmission coefficients in the linear polarisation basis (for the wavelength that was used to create the
Structure) can be calculated with:

J_refl_lin, J_trans_lin = my_stack_structure.get_fresnel()

and converted to the circular polarisation basis with:

J_refl_circ, J_trans_circ = Structure.fresnel_to_fresnel_circ(J_lin)

The results are two 2 × 2 Numpy arrays of reflection coefficients (𝑟) and transmission coefficients (𝑡) organised the
following way:

• in the linear polarisation basis:

𝑟𝑙𝑖𝑛 =

[︂
𝑟𝑝 to 𝑝 𝑟𝑠 to 𝑝

𝑟𝑝 to 𝑠 𝑟𝑠 to 𝑠

]︂
𝑡𝑙𝑖𝑛 =

[︂
𝑡𝑝 to 𝑝 𝑡𝑠 to 𝑝

𝑡𝑝 to 𝑠 𝑡𝑠 to 𝑠

]︂

• in the circular polarisation basis:

𝑟𝑐𝑖𝑟𝑐 =

[︂
𝑟𝑅𝐶𝑃 to 𝑅𝐶𝑃 𝑟𝐿𝐶𝑃 to 𝑅𝐶𝑃

𝑟𝑅𝐶𝑃 to 𝐿𝐶𝑃 𝑟𝐿𝐶𝑃 to 𝐿𝐶𝑃

]︂
𝑡𝑐𝑖𝑟𝑐 =

[︂
𝑡𝑅𝐶𝑃 to 𝑅𝐶𝑃 𝑡𝐿𝐶𝑃 to 𝑅𝐶𝑃

𝑡𝑅𝐶𝑃 to 𝐿𝐶𝑃 𝑡𝐿𝐶𝑃 to 𝐿𝐶𝑃

]︂

For example, the user can access the reflection coefficient for incoming s-polarised light reflected as p-polarised light
of the multilayer stack represented by the Structure my_stack_structure with:

J_lin, _ = my_stack_structure.get_fresnel()
J_lin[0, 1]

The reflectance and transmittance of the multilayer stack (for the wavelength that was used to create the Structure)
can be obtained with:

my_stack_structure.get_refl_trans(circ=<False|True>, method=<"SM"|"TM">)

where method defines the matrix method used ("SM" (default) for the scattering matrix method and "TM" for
the transfer matrix method) and circ=False (default) calculates the reflectance and transmittance in the linear
polarisation basis and circ=True calculates them in the circular polarisation basis.

The results are two 2 × 2 Numpy arrays of reflectances (𝑅) organised the following way:

• in the linear polarisation basis:

10 Chapter 3. Calculating the reflection and transmission spectra of a stack

PyLlama, Release 1.0

𝑅𝑙𝑖𝑛 =

[︂
𝑅𝑝 to 𝑝 𝑅𝑠 to 𝑝

𝑅𝑝 to 𝑠 𝑅𝑠 to 𝑠

]︂
𝑇𝑙𝑖𝑛 =

[︂
𝑇𝑝 to 𝑝 𝑇𝑠 to 𝑝

𝑇𝑝 to 𝑠 𝑇𝑠 to 𝑠

]︂
• in the circular polarisation basis:

𝑅𝑐𝑖𝑟𝑐 =

[︂
𝑅𝑅𝐶𝑃 to 𝑅𝐶𝑃 𝑅𝐿𝐶𝑃 to 𝑅𝐶𝑃

𝑅𝑅𝐶𝑃 to 𝐿𝐶𝑃 𝑅𝐿𝐶𝑃 to 𝐿𝐶𝑃

]︂
𝑇𝑐𝑖𝑟𝑐 =

[︂
𝑇𝑅𝐶𝑃 to 𝑅𝐶𝑃 𝑇𝐿𝐶𝑃 to 𝑅𝐶𝑃

𝑇𝑅𝐶𝑃 to 𝐿𝐶𝑃 𝑇𝐿𝐶𝑃 to 𝐿𝐶𝑃

]︂
To calculate the reflection and transmission spectra of the stack over a range of wavelengths, the user must create a
new Structure for each wavelength and recalculate the reflectance, for example with:

Creation of an empty variable
reflection_s_to_p = []

Creation of the wavelengths
wl_nm_list = range(400, 800)

Calculation of the reflectance for each wavelength
for wl_nm in wl_nm_list:

Calculation of the wavevector
k0 = 2 * numpy.pi / wl_nm
Kx = n_entry * numpy.sin(theta_in_rad)
Ky = 0
Kz_entry = n_entry * numpy.cos(theta_in_rad)
theta_out_rad = numpy.arcsin((n_entry / n_exit) * numpy.sin(self.theta_in_rad))
Kz_exit = n_exit * numpy.cos(theta_out_rad)

Creation of the entry and exit half-spaces and of the two layers
entry = HalfSpace(epsilon_entry, Kx, Kz_entry, k0)
exit = HalfSpace(epsilon_exit, Kx, Kz_exit, k0)
layer_a = Layer(eps_a, thick_a, Kx, k0)
layer_b = Layer(eps_b, thick_b, Kx, k0)

Creation of the periodic stack
my_stack_structure = Structure(entry, exit, Kx, Ky, Kz_entry, Kz_exit, k0)
my_stack_structure.add_layers([layer_a, layer_b])
my_stack_structure.N_periods = N

Calculation of the reflectance and storage
J_refl_lin, _ = my_stack_structure.get_refl_trans()
reflection_s_to_p.append(J_refl_lin[0, 1])

Plotting
matplotlib.pyplot.plot(wl_nm_list, reflection_s_to_p)

where:

• eps_a and eps_b are the permittivity tensors (3x3 Numpy array) of the layer, which can represent a material
that is isotropic or anisotropic, absorbing or non-absorbing

• thick_a and thick_b are the thicknesses of the two layers of the periodic pattern, in nanometers

3.1. From scratch: the technical way 11

PyLlama, Release 1.0

• N is the number of periods

• ‘‘ theta_in_rad‘‘ is the angle of incidence upon the stack, in radians

• eps_entry and eps_exit are the permittivities of the two isotropic half-spaces; they can be defined differ-
ently for each wavelength if the materials are dispersive

3.2 With the Model class: the flexible way

When the user creates a multilayer stack my_stack_model through one of the Model children classes, the re-
flectance and transmittance of the multilayer stack (for the wavelength that was used to create the Structure) can
be obtained with:

my_stack_model.get_refl_trans(circ=<False|True>, method=<"SM"|"TM">)

where method defines the matrix method used ("SM" (default) for the scattering matrix method and "TM" for
the transfer matrix method) and circ=False (default) calculates the reflectance and transmittance in the linear
polarisation basis and circ=True calculates them in the circular polarisation basis.

The results are two 2 × 2 Numpy arrays of reflectances (𝑅) organised the following way:

• in the linear polarisation basis:

𝑅𝑙𝑖𝑛 =

[︂
𝑅𝑝 to 𝑝 𝑅𝑠 to 𝑝

𝑅𝑝 to 𝑠 𝑅𝑠 to 𝑠

]︂
𝑇𝑙𝑖𝑛 =

[︂
𝑇𝑝 to 𝑝 𝑇𝑠 to 𝑝

𝑇𝑝 to 𝑠 𝑇𝑠 to 𝑠

]︂

• in the circular polarisation basis:

𝑅𝑐𝑖𝑟𝑐 =

[︂
𝑅𝑅𝐶𝑃 to 𝑅𝐶𝑃 𝑅𝐿𝐶𝑃 to 𝑅𝐶𝑃

𝑅𝑅𝐶𝑃 to 𝐿𝐶𝑃 𝑅𝐿𝐶𝑃 to 𝐿𝐶𝑃

]︂
𝑇𝑐𝑖𝑟𝑐 =

[︂
𝑇𝑅𝐶𝑃 to 𝑅𝐶𝑃 𝑇𝐿𝐶𝑃 to 𝑅𝐶𝑃

𝑇𝑅𝐶𝑃 to 𝐿𝐶𝑃 𝑇𝐿𝐶𝑃 to 𝐿𝐶𝑃

]︂

Note: Each children class of Model contains a Structure that can be accessed through my_stack_model.
structure and the the previous part of this tutorial can be applied to my_stack_model.structure to access
the partial waves, the transfer or scattering matrices and the reflection and transmission coefficients.

To calculate the reflection and transmission spectra of the stack over a range of wavelengths, the user must create a
new Model for each wavelength and recalculate the reflectance and transmittance, for example with:

Creation of an empty variable
reflection_s_to_p = []

Creation of the wavelengths
wl_nm_list = range(400, 800)

Calculation of the reflectance for each wavelength
for wl_nm in wl_nm_list:

(continues on next page)

12 Chapter 3. Calculating the reflection and transmission spectra of a stack

PyLlama, Release 1.0

(continued from previous page)

Creation of the periodic stack
my_stack_model = StackModel([eps_a, eps_b],

[thick_a, thick_b],
n_entry,
n_exit,
wl_nm,
theta_in_rad,
N)

Calculation of the reflectance and storage
J_refl_lin, _ = my_stack_model.get_refl_trans()
reflection_s_to_p.append(J_refl_lin[0, 1])

Plotting
matplotlib.pyplot.plot(wl_nm_list, reflection_s_to_p)

where:

• eps_a and eps_b are the permittivity tensors (3x3 Numpy array) of the layer, which can represent a material
that is isotropic or anisotropic, absorbing or non-absorbing

• thick_a and thick_b are the thicknesses of the two layers of the periodic pattern, in nanometers

• N is the number of periods

• ‘‘ theta_in_rad‘‘ is the angle of incidence upon the stack, in radians

• n_entry and n_exit are the refractive indices of the two isotropic half-spaces; they can be defined differently
for each wavelength if the materials are dispersive

3.3 With the Spectrum class: the automated way

When the user creates a multilayer stack my_stack_spec through the Spectrum class, the reflection and trans-
mission spectra of the multilayer stack (for the range of wavelength that was inputted in the Spectrum) can be
obtained with:

my_stack_spectrum.calculate_refl_trans(circ=<False|True>, method=<"SM"|"TM">, talk=
→˓<False|True>)

where method defines the matrix method used ("SM" (default) for the scattering matrix method and "TM" for the
transfer matrix method), circ=False (default) calculates the reflectance and transmittance in the linear polarisation
basis and circ=True calculates them in the circular polarisation basis, and talk=True enables to display the
calculation progress on the screen (default is False).

The calculated reflection spectra are stored into the dictionary my_stack_spectrum.data and can be accessed
with:

• in the linear polarisation basis: my_stack_spectrum.data["R_p_to_p_to_p"],
my_stack_spectrum.data["R_s_to_p"], my_stack_spectrum.data["R_p_to_s"],
my_stack_spectrum.data["R_s_to_s"]

• in the circular polarisation basis: my_stack_spectrum.data["R_R_to_R"],
my_stack_spectrum.data["R_L_to_R"], my_stack_spectrum.data["R_R_to_L"],
my_stack_spectrum.data["R_L_to_L"]

3.3. With the Spectrum class: the automated way 13

PyLlama, Release 1.0

and similarly for the transmission spectra: - in the linear polarisation basis: my_stack_spectrum.
data["T_p_to_p"], my_stack_spectrum.data["T_s_to_p"], my_stack_spectrum.
data["T_p_to_s"], my_stack_spectrum.data["T_s_to_s"]

• in the circular polarisation basis: my_stack_spectrum.data["T_R_to_R"],
my_stack_spectrum.data["T_L_to_R"], my_stack_spectrum.data["T_R_to_L"],
my_stack_spectrum.data["T_L_to_L"]

The calculated spectra (everything stored in my_stack_spectrum.data) can then be exported in MATLAB or
Python-compatible format with:

my_stack_spectrum.export(path_out, with_param=<True|False>)

where:

• path_out is the name of the file. If it ends with .mat, the export will be in MATLAB-compatible format,
and if it ends with .pck, the export will be in Python-compatible format (with Pickles)

• with_param is set to True (default) when the parameters user for the model are exported too and to False
when they are not exported

Note: Some Models may take as input parameters objects that are created through the user’s custom-made libraries
(for example, CholestericModel requires an instance of a Cholesteric as a parameter). These objects will be
stored in the Model’s parameters. MATLAB can import any unknown object in shape of MATLAB’s type struct
but Python can only import objects for whose it can load the libraries that created them. In this case, exporting the
spectra without the parameters may be useful, but this is not the default option.

The calculation the reflection spectrum of the stack over a range of wavelengths is automatic, for example with:

Creation of the wavelengths
wl_nm_list = range(400, 800)

Parameters for the stack
model_type = "StackModel"
model_parameters = {"eps_list": [eps_a, eps_b],

"thickness_nm_list": [thick_a, thick_b],
"n_entry": n_entry,
"n_exit": n_exit,
"theta_in_rad": theta_in_rad,
"N_per": N}

Creation of the periodic stack
my_stack_spec = Spectrum(wl_nm_list, model_type, model_parameters)

Calculation of the reflectance spectrum in one go
my_stack_spec.calculate_refl_trans()

Plotting
matplotlip.pyplot.plot(wl_nm_list, my_stack_spec.data["R_s_to_p"])

Export for MATLAB
All polarisation combinations are exported (p to p, s to p, p to p, s to s)

my_stack_spec.export("my_file_name.mat")

where:

• eps_a and eps_b are the permittivity tensors (3x3 Numpy array) of the layer, which can represent a material
that is isotropic or anisotropic, absorbing or non-absorbing; if the material is dispersive, a Model different than

14 Chapter 3. Calculating the reflection and transmission spectra of a stack

PyLlama, Release 1.0

StackModel must be used that is able to handle a list of permittivities

• thick_a and thick_b are the thicknesses of the two layers of the periodic pattern, in nanometers

• N is the number of periods

• theta_in_rad is the angle of incidence upon the stack, in radians

• n_entry and n_exit are the refractive indices of the two isotropic half-spaces; they can be defined differently
for each wavelength if the materials are dispersive

3.3. With the Spectrum class: the automated way 15

PyLlama, Release 1.0

16 Chapter 3. Calculating the reflection and transmission spectra of a stack

CHAPTER 4

Quick cholesteric tutorial

In this section aimed at users who are not experienced in programming and/or in Python, we explain a code minimal
working example to:

• create a cholesteric architecture with a chosen pitch, tilt and handedness

• obtain a 3D representation of the cholesteric architecture

• calculate the reflectance in transmittance in the circular polarisation basis for a chosen angle of incidence

• extract and plot the results in Python

• export the results for further processing in MATLAB

First, the user must import the required packages. We need PyLLama for the optical calculations, Cholesteric to
create the cholesteric architecture, NumPy for basic numerical calculation and Matplotlib.PyPlot for plotting.
In Python, all packages are imported in lowercaps at the beginning of the code and they are often given a shorter name
(ch instead of cholesteric for example).

Import the required packages
import pyllama as ll
import cholesteric as ch
import numpy as np
import matplotlib.pyplot as plt

Then, the user creates their Cholesteric object with ch.Cholesteric:

Cholesteric object
pitch_nm = 500
tilt_rad = 10 * np.pi / 180
chole = ch.Cholesteric(pitch360=pitch_nm,

tilt_rad=tilt_rad,
handedness=1)

The user can obtain a 3D representation of the Cholesteric object with the function plot_simple(). The
view parameters defines the viewing angle and the type parameters defines how the pseudolayers are represented
(here, with arrows). The user should note that the 𝑥, 𝑦 and 𝑧 axes might not have exactly the same scale.

17

PyLlama, Release 1.0

3D representation of the cholesteric object
fig_3D, ax_3D = chole.plot_simple(view="classic", type="arrow")

The user can then define the incident conditions upon the cholesteric and obtain their 3D representation. When the
cholesteric is tilted, the 𝑧 axis will be shifted to the helical axis for the calculations.

Incident conditions and 3D representation
theta_in_deg = 50
theta_in_rad = theta_in_deg * np.pi / 180
chole.plot_add_optics(fig_3D, ax_3D, theta_in_rad)

The output is displayed on Figure Fig. 4.1.

Fig. 4.1: 3D representation of chole obtained with the functions plot_simple() and add_optics().

Then, the user can choose the optical parameters such as the average refractive index and the birefringence, and create
a Spectrum object:

Optical parameters
n_av = 1.433
biref = 0.04
n_e = n_av + 0.5 * biref
n_o = n_av - 0.5 * biref
n_entry = n_av

(continues on next page)

18 Chapter 4. Quick cholesteric tutorial

PyLlama, Release 1.0

(continued from previous page)

n_exit = n_av
N_per = 20
wl_nm_list = np.arange(400, 800)

Creation of the spectrum
spectrum = ll.Spectrum(wl_nm_list,

"CholestericModel",
dict(chole=chole,

n_e=n_e,
n_o=n_o,
n_entry=n_entry,
n_exit=n_exit,
N_per=N_per,
theta_in_rad=theta_in_rad))

The calculation of the reflectance and transmittance is done in one go; the parameter circ=True enables to calculate
the reflectance and transmittance in the circular polarisation basis, the parameter method="SM" enables to choose
the always-accurate scattering matrix method for the calculation and the parameter talk=True allows do display
the calculation progress on the screen. The spectrum will take about 30 seconds to be calculated.

Calculation of the reflectance and transmittance
spectrum.calculate_refl_trans(circ=True, method="SM", talk=True)

The results can be plotted:

Plot the spectra
fig = plt.figure()

ax1 = fig.add_subplot(311)
ax1.plot(wl_nm_list, spectrum.data['R_R_to_R'], label="RCP to RCP")
ax1.plot(wl_nm_list, spectrum.data['R_R_to_L'], label="RCP to LCP")
plt.legend(loc=2)
plt.xlim([400, 800])
plt.ylim([0, 1])
plt.xlabel('Wavelength (nm)')
plt.ylabel('Reflectance')
ax1.set_title('Incoming RCP')

ax2 = fig.add_subplot(312)
ax2.plot(wl_nm_list, spectrum.data['R_L_to_R'], label="LCP to RCP")
ax2.plot(wl_nm_list, spectrum.data['R_L_to_L'], label="LCP to LCP")
plt.legend(loc=2)
plt.xlim([400, 800])
plt.ylim([0, 1])
plt.xlabel('Wavelength (nm)')
plt.ylabel('Reflectance')
ax2.set_title('Incoming LCP')

For incoming unpolarised light, the user should not forget to average the incoming RCP and incoming LCP:

ax3 = fig.add_subplot(313)
ax3.plot(wl_nm_list, 0.5 * (spectrum.data['R_R_to_R']

+ spectrum.data['R_R_to_L']
+ spectrum.data['R_L_to_R']
+ spectrum.data['R_L_to_L']),
label="reflection")

(continues on next page)

19

PyLlama, Release 1.0

(continued from previous page)

ax3.plot(wl_nm_list, 0.5 * (spectrum.data['T_R_to_R']
+ spectrum.data['T_R_to_L']
+ spectrum.data['T_L_to_R']
+ spectrum.data['T_L_to_L']),
label="transmission")

plt.legend(loc=2)
plt.xlim([400, 800])
plt.ylim([0, 1])
plt.xlabel('Wavelength (nm)')
plt.ylabel('Intensity')
ax3.set_title('Incoming unpolarised')

The user can make the layout of the plots a bit nicer, before saving and displaying the figure (without plt.show(),
the plots will not be shown on the computer screen):

plt.tight_layout()
fig.savefig("script_cholesteric_example.png", dpi=300)
plt.show()

The output is displayed on Figure Fig. 4.2.

Fig. 4.2: Spectra obtained with the Spectrum and CholestericModel.

The results can be exported to MATLAB very simply for further processing. The parameters such as the refractive

20 Chapter 4. Quick cholesteric tutorial

PyLlama, Release 1.0

indices are also exported, as well as all the fields of the cholesteric object (such as the directors of the pseudo-layers).
To export with Pickles (for Python further processing), the user should replace the extension .mat by .pck.

Export the spectra to an external file
path_out = "pyllama_cholesteric_spectrum.mat"
spectrum.export(path_out)

21

PyLlama, Release 1.0

22 Chapter 4. Quick cholesteric tutorial

CHAPTER 5

Choosing which matrix method to use

Note: The theory that leads to the equations presented in this section is detailed in “PyLlama: a stable and flexible
Python toolkit for the electromagnetic modeling of multilayered anisotropic media” (in preparation).

The transfer matrix and the scattering matrix both link the incoming, reflected and transmitted electric fields, but their
equations are built differently. The notations are displayed on Figure Fig. 5.1.

Fig. 5.1: Schematic of the electric field direction for 𝑝 and 𝑠-polarisations.

The transfer matrix equation is: ⎡⎢⎢⎣
𝐸𝑝 transmitted
𝐸𝑠 transmitted

0
0

⎤⎥⎥⎦ = 𝑇

⎡⎢⎢⎣
𝐸𝑝 incident
𝐸𝑠 incident
𝐸𝑝 reflected
𝐸𝑠 reflected

⎤⎥⎥⎦

23

PyLlama, Release 1.0

and the scattering matrix equation is: ⎡⎢⎢⎣
𝐸𝑝 transmitted
𝐸𝑠 transmitted
𝐸𝑝 reflected
𝐸𝑠 reflected

⎤⎥⎥⎦ = 𝑆

⎡⎢⎢⎣
𝐸𝑝 incident
𝐸𝑠 incident

0
0

⎤⎥⎥⎦
The reflection and transmission coefficients are extracted from either of these matrix equations to obtain:

𝑟𝑝 to 𝑝 =
𝐸𝑝reflected
𝐸𝑝incident

𝑟𝑠 to 𝑝 =
𝐸𝑝reflected
𝐸𝑠incident

𝑟𝑝 to 𝑠 =
𝐸𝑠reflected
𝐸𝑝incident

𝑟𝑠 to 𝑠 =
𝐸𝑠reflected
𝐸𝑠incident

and:

𝑡𝑝 to 𝑝 =
𝐸𝑝transmitted
𝐸𝑝incident

𝑡𝑠 to 𝑝 =
𝐸𝑝transmitted
𝐸𝑠incident

𝑡𝑝 to 𝑠 =
𝐸𝑠transmitted
𝐸𝑝incident

𝑡𝑠 to 𝑠 =
𝐸𝑠transmitted
𝐸𝑠incident

Mathematically, both equations lead to the same result and choosing which one to use has no impact on the reflection
and transmission coefficients, but numerically, differences can be observed in the robustness and in the computation
time.

As an example, we built two cholesterics with a different birefringence (chole_1 with ∆𝑛 = 0.05 and chole_2
with ∆𝑛 = 0.2) and a different number of periods (20 for chole_1 and 200 for chole_2), and confronted the
transfer and scattering matrix methods. A we can see on Figure Fig. 5.2, the two matrix methods give the exact same
results when the birefringence is low and when the number of periods is low. However, for a higher birefringence and
a larger number of periods, the transfer matrix (be it calculated with the eigenvalues and eigenvectors or with the direct
exponential of Berreman’s matrix) is numerically unstable.

Fig. 5.2: Reflection spectra calculated with the transfer matrix method (TM and EM) and the scattering matrix method
(SM) for chole_1 (left) and chole_2 (right).

With the scattering matrix method (SM), the spectra took about 40 seconds to be calculated on a laptop, against 20
seconds for the transfer matrix method with the eigenvalue and eigenvector calculation (TM) and 35 seconds for the
transfer matrix method with the direct exponential of Berreman’s matrix (EM).

The SM method always gives accurate results. However, for speed, the user may prefer using the TM transfer matrix
method. The user should always check that the results calculated with TM match these calculated with SM in the most
critical conditions of the user’s range of parameters (higher birefringence, larger number of periods, larger angle of
incidence).

24 Chapter 5. Choosing which matrix method to use

CHAPTER 6

Creating a custom Model class

The Model class and its children enable the user to construct Structures automatically from given parameters.
The class Model can be viewed as an abstract class that defines parameters and methods common to all its children;
however, it is possible to create an instance of Model: it will have an empty Structure. In the tutorial, we explain
how the class Model is constructed and how the user can write their own child class.

6.1 Anatomy of the Model class

The parameters of the Model class are:

• n_entry: the refractive index of the stack’s entry isotropic semi-infinite medium

• n_exit: the refractive index of the stack’s exit isotropic semi-infinite medium

• wl_nm: the wavelength in nanometers

• theta_in_rad: the angle of incidence in radians

and they are used to initialise the Model with the following fields:

def __init__(self, n_entry, n_exit, wl_nm, theta_in_rad):
self.n_entry = n_entry
self.n_exit = n_exit
self.wl = wl_nm
self.theta_in = theta_in_rad
theta_out = np.arcsin((n_entry / n_exit) * np.sin(self.theta_in))
self.k0 = 2 * np.pi / self.wl
self.Kx = self.n_entry * np.sin(self.theta_in) # kx = Kx * k0
self.Ky = 0 # ky = Ky * k0
self.Kz_entry = self.n_entry * np.cos(self.theta_in) # kz_entry = Kz_entry * k0
self.Kz_exit = self.n_exit * np.cos(theta_out) # kz_entry = Kz_entry * k0
self.structure = self._build_structure_total()

The Model’s structure is an instance of Structure created with the function
_build_structure_total():

25

PyLlama, Release 1.0

def _build_structure_total(self):
entry_space, exit_space = self._build_entry_exit()
structure = self._build_structure(entry_space, exit_space)
return structure

This function calls two sub-functions: _build_entry_exit() that creates the entry and exit isotropic
HalfSpaces, and _build_structure() that creates a Structure containing the appropriate Layers to
represent the multilayer stack.

The function _build_entry_exit() simply creates the entry and exit HalfSpaces:

def _build_entry_exit(self):
epsilon_entry = np.array([[self.n_entry ** 2, 0, 0],

[0, self.n_entry ** 2, 0],
[0, 0, self.n_entry ** 2]])

epsilon_exit = np.array([[self.n_exit ** 2, 0, 0],
[0, self.n_exit ** 2, 0],
[0, 0, self.n_exit ** 2]])

entry_space = HalfSpace(epsilon_entry, self.Kx, self.Kz_entry, self.k0, category=
→˓"isotropic")

exit_space = HalfSpace(epsilon_exit, self.Kx, self.Kz_exit, self.k0, category=
→˓"isotropic")

return entry_space, exit_space

and the function _build_structure() creates the Structure representing the multilayer stack, without any
Layer when the class Model is used:

def _build_structure(self, entry_space, exit_space):
warnings.warn("The build_function method of the Model class is used.")
return Structure(entry=entry_space, exit=exit_space, Kx=self.Kx, Ky=self.Ky, Kz_

→˓entry=self.Kz_entry, Kz_exit=self.Kz_exit, k0=self.k0, N_periods=1)

When the Structure has been built, its reflectance can be calculated with get_refl_trans():

def get_refl_trans(self, circ=False, method="SM"):
return self.structure.get_refl_trans(circ=circ, method=method)

6.2 Creating a custom child

The core functions in the Model class are the following:

• __init__ to create the Model instance

• _build_entry_exit() to create the entry and exit HalfSpaces

• _build_structure() to create the Structure with the Layers

• _build_structure_total() that calls _build_entry_exit() and _build_structure()

• get_refl_trans() that calculates the reflectance of the multilayer stack represented by the Model

This constitutes a blueprint for the children classes of Model, such as StackModel or CholestericModel. A
child class of Model contains functions that can be divided into three categories:

• functions that are implemented in Model and that the child class inherits

• functions that are implemented in Model and that are overwritten in the child class

• functions that are specific to the child class

26 Chapter 6. Creating a custom Model class

PyLlama, Release 1.0

Typically, the user’s new child class will be written as follows:

class ChildModel(Model):
def __init__(self, parameter1, parameter2, parameter3, n_entry, n_exit, wl_nm,

→˓theta_in_rad):
Initialisation with parameters that are specific to ChildModel:
self.param1 = parameter1
self.param2 = parameter2
self.param3 = parameter3
Initialisation with the inherited method:
(ChildModel's parameters might be used to recalculate the parent's

→˓parameters)
super().__init__(n_entry, n_exit, wl_nm, theta_in_rad)

def _build_structure(self, entry_space, exit_space):
Create an empty structure between isotropic half spaces
my_structure = Structure(entry_space, exit_space, self.Kx, self.Ky, self.Kz_

→˓entry, self.Kz_exit, self.k0, N_per=1)

A custom routine with self.param1, self.param2, self.param3 that creates
→˓Layers and adds them to the Structure

my_structure.add_layers(my_list_of_layers)

Return the Structure that contains the custom-made Layers
return my_structure

When using super().__init__ in the child class (ChildModel), it will call the
_build_structure_total() method in the parent class (Model), which will then call both the
_build_structure() method of the child (which overrides the parent one), and _build_entry_exit() of
the parent (since it is not overridden by a child version). CholestericModel, SlabModel, StackModel and
StackOpticalThicknessModel are built this way. They also inherit get_refl_trans() from Model.

The user simply needs to add their own ChildModel to the code by using the sample used as an example above
with their own chosen parameters, and when calling ChildModel.get_refl_trans(), they will immedietaly
benefit from the optical calculations that have been implemented.

Of course, when the user writes a new child class, they may overwrite as many functions as they want, and they may
add as many specific functions as they want. For example, MixedModel overwrites most functions from Model.

Model also contains the function copy_as_stack() that creates a StackModel containing the same layers as a
given Model. The user will need to overwrite this function too.

6.3 Pairing the custom child with Spectrum

The Spectrum class implements the modelling of a multilayer stack over a range of wavelength and provide tools
for calculating reflection spectra with the choice of the polarisation basis and for exporting the data. Pairing the user’s
new child class of Model with Spectrum enables the user to have access to such functionalities.

A Spectrum is defined by the following function:

def __init__(self, wl_nm_list, model_type, model_parameters):
self.wl_list = wl_nm_list # list of wavelengths in nm
self.mo_type = model_type # name of model
self.mo_param = model_parameters # dictionary with model parameters
self.data = {} # empty dictionary for storage

6.3. Pairing the custom child with Spectrum 27

PyLlama, Release 1.0

When the user calls the function calculate_refl(), the name of the Model (mo_type) is checked and this
triggers the creation of the appropriate Model, from the parameters in the dictionary mo_param. The user needs
to add their own elif case to identify the ChildModel and handle its parameters correctly. For example, for the
following ChildModel’s input parameters:

def __init__(self, parameter1, parameter2, parameter3, n_entry, n_exit, wl_nm, theta_
→˓in_rad, default4=value4, default5=value5)

the new elif case to add to Spectrum’s calculate_refl() corresponds to:

elif self.mo_type == "ChildModel":
default_param = dict("default4"=value4, "default5"=value5)
self.mo_param = {**default_param, **self.mo_param} # self.mo_param is added to

→˓default_param and overwrites the default parameters
model = ChildModel(self.mo_param["parameter1"],

self.mo_param["parameter2"],
self.mo_param["parameter3"],
self.mo_param["n_entry"],
self.mo_param["n_exit"],
wl,
self.mo_param["theta_in_rad"],
self.mo_param["default4"],
self.mo_param["default5"])

This says that when Spectrum is instanciated with the parameter mo_type equal to the string ChildModel, an
instance of ChildModel will be created with the parameters chosen by the user.

The keys "parameter1", "parameter2", etc, can have an arbitrary name, but for clarity it is easier if the keys
match the parameter’s name in the __init__ function.

Once this is done, the user can create a Spectrum with ChildModel as usual, as well as calculate the reflectance
and export the spectra:

Creation of the wavelengths
wl_nm_list = range(400, 800)

Parameters for the ChildModel
There are two default parameters: default4 and default5
The user sets a value for default5: this overwrites the default value
The user doesn't set a value for default4: the default value will be used
model_type = "ChildModel"
model_parameters = {"parameter1": my_value_1,

"parameter2": my_value_2,
"parameter3": my_value_3,
"default5": my_value_5,
"n_entry": n_entry,
"n_exit": n_exit,
"theta_in_rad": theta_in_rad}

Creation of the periodic stack
my_spec = Spectrum(wl_nm_list, model_type, model_parameters)

The functions of the Spectrum class automatically work
my_stack_spec.calculate_refl_trans()
matplotlip.pyplot.plot(wl_nm_list, my_stack_spec.data["R_ps"])
my_stack_spec.export("my_file_name.mat")

28 Chapter 6. Creating a custom Model class

CHAPTER 7

Acknowledgements

7.1 Authors

PyLlama has originally been developed by Mélanie M. Bay, under the supervision of Silvia Vignolini and Kevin
Vynck, as part of her PhD project “The Interplay of between order and disorder in cholesteric hydroxypropyl cellulose
films” (University of Cambridge, 2021).

7.2 Referencing

Please cite the following article in any work making use of PyLlama: M. M. Bay, S. Vignolini, and K. Vynck,
“PyLlama: A stable and versatile Python toolkit for the electromagnetic modelling of multilayered anisotropic media”,
Comput. Phys. Commun. 273, 108256 (2022). DOI 10.1016/j.cpc.2021.108256

7.3 Financial support

This work was supported by ERC grant ERC-2014-STG H2020 639088 and Philip Leverhulme Prize (PLP-2019-271)
for S.V. and M.M.B.

29

https://doi.org/10.1016/j.cpc.2021.108256

PyLlama, Release 1.0

30 Chapter 7. Acknowledgements

CHAPTER 8

Documentation

class pyllama.CholestericModel(chole, n_e, n_o, n_entry, n_exit, wl_nm, N_per, theta_in_rad)
This class represents a cholesteric liquid crystal with a multilayer stack of rotating nematic layers, constructed
from a Cholesteric physical model.

Parameters

• chole (Cholesteric) – a Cholesteric object from the Cholesteric library

• n_e (float) – the extraordinary refractive index

• n_o (float) – the ordinary refractive index

• n_entry (float) – the refractive index of the stack’s entry isotropic semi-infinite
medium

• n_exit (float) – the refractive index of the stack’s exit isotropic semi-infinite medium

• N_per (int) – the number of periods. The cholesteric chole may already represent more
than one helicoid: the layers created from the helicoid(s) in chole represent the periodic
unit, which is repeated N_per times in CholestericModel.

• wl_nm (float) – the wavelength in nanometers

• theta_in_rad (float) – the angle of incidence in radians

class pyllama.HalfSpace(epsilon, Kx, Kz, k0, category=’isotropic’)
This class represents an isotropic semi-infinite medium before or after a multilayer stack and enables to build
the partial waves (eigenvalues, eigenvectors) of the medium. HalfSpace represents the physical layer for one
specific wavelength (the material may be dispersive).

Parameters

• epsilon (ndarray) – permittivity tensor: a 3x3 Numpy array

• Kx (float) – 𝑥-component of the normalised wavevector

• k0 (float) – normalisation factor of the wavevector: the 𝑥-component of the wavevector
is equal to 𝑘𝑥 = 𝑘0𝐾𝑥

• category (str) – always "isotropic" in the code’s 1.0 version

31

PyLlama, Release 1.0

class pyllama.Layer(epsilon, thickness_nm, Kx, k0, rot_angle_rad=0, rot_axis=’z’, hold=False, nu-
merical_method=’numpy’)

This class represents a homogeneous layer in a multilayer stack and enables to build Berreman’s matrix as well
as the partial waves (eigenvalues, eigenvectors) of the layer. The layer is made of a non-magnetic and non-
optically acvive material. Layer represents the physical layer for one specific wavelength (the material may be
dispersive). Its parameters are:

Parameters

• epsilon (ndarray) – permittivity tensor, a 3x3 Numpy array

• thickness_nm (float) – thickness of the Layer in nanometers

• Kx (float) – 𝑥-component of the normalised wavevector

• k0 (float) – normalisation factor of the wavevector: the 𝑥-component of the wavevector
is equal to 𝑘𝑥 = 𝑘0𝐾𝑥

• rot_angle_rad (float) – rotation angle of the layer (in radians) around the axis
rot_axis

• rot_axis (ndarray) – rotation axis: a one-dimensional Numpy array of length 3 (or
the string 'x', 'y' or 'z')

• hold (bool) – when the user decides to hold (hold=True) the calculation of Berreman’s
matrix, the eigenvalues and eigenvectors, the user must then manually apply the functions to
the Layer before calculating the transfer or scattering matrix. This is exceptional practice.
The default is hold=True.

• numerical_method (String) – indicates the package to use to calculate the eigenvec-
tors and eigenvalues of the layer; either 'numpy' (default) or 'sympy'

build_P_Q()
This function constructs the interface matrix 𝑃 and the propagation matrix 𝑄 for one Layer.

• The interface matrix 𝑃 describes the change of medium.

• The propagation matrix 𝑄 describes the propagation in the thickness of the medium and the phase
build-up.

Return ndarray P interface matrix 𝑃 , 3x3 Numpy array

Return ndarray Q propagation matrix 𝑄, 3x3 Numpy array

static rotate_permittivity(eps, angle_rad, axis=’z’)
This function calculates a rotated permittivity tensor.

Parameters

• eps (ndarray) – permittivity tensor: a 3x3 Numpy array

• angle_rad (float) – rotation angle (in radians) around the rotation axis axis

• axis (ndarray) – rotation axis: a one-dimensional Numpy array of length 3 (or the
string 'x', 'y' or 'z')

Returns rotated permittivity tensor: a 3x3 Numpy array

class pyllama.MixedModel(models_list, n_entry, n_exit, wl_nm, theta_in_rad)
This class represents the combination of several Models with their sub-periodicities, given in a list of Models.
The entry and exit HalfSpaces of these Models are ignored and replaced by these of the MixedModel.
Kx and k0 must be identical throughout all stacked models, which is checked at the initialisation; the Models
that don’t fit will be discarded and a warning will be issued.

32 Chapter 8. Documentation

PyLlama, Release 1.0

Parameters

• models_list (list) – a list of Models (models_list[0] is on top of the stack,
after the entry HalfSpace)

• n_entry (float) – the refractive index of the stack’s entry isotropic semi-infinite
medium

• n_exit (float) – the refractive index of the stack’s exit isotropic semi-infinite medium

• wl_nm (float) – the wavelength in nanometers

• theta_in_rad (float) – the angle of incidence in radians

copy_as_stack()
This function retrieves the permittivity and the thickness of the Structure created by the Model and
creates an identical non-periodic StackModel (if the Model was periodic, the StackModel contains
multiple times the same layers, but no periodic pattern to repeat).

Returns a StackModel

get_refl_trans(circ=False, method=’SM’)
This function calculates the Model’s reflectance in the linear or circular polarisation basis, with the method
chosen by the user.

Parameters

• circ (bool) – False to express results in the linear polarisation basis, True to express
results in the circular polarisation basis

• method (string) – the matrix method to use for the calculation:

– "SM" for the scattering matrix method

– "TM" for the transfer matrix method with the eigenvectors and eigenvalues

– "EM" for the transfer matrix method with the direct exponential of Berreman’s matrix

Returns

reflectance: 2x2 Numpy array whose values correspond to:

• in the linear polarisation basis (circ=False):

[︂
𝑅𝑝 to 𝑝 𝑅𝑠 to 𝑝

𝑅𝑝 to 𝑠 𝑅𝑠 to 𝑠

]︂
• in the circular polarisation basis (circ=False):

[︂
𝑅𝑅𝐶𝑃 to 𝑅𝐶𝑃 𝑅𝐿𝐶𝑃 to 𝑅𝐶𝑃

𝑅𝑅𝐶𝑃 to 𝐿𝐶𝑃 𝑅𝐿𝐶𝑃 to 𝐿𝐶𝑃

]︂

Returns

transmittance: 2x2 Numpy array whose values correspond to:

• in the linear polarisation basis (circ=False):

[︂
𝑇𝑝 to 𝑝 𝑇𝑠 to 𝑝

𝑇𝑝 to 𝑠 𝑇𝑠 to 𝑠

]︂

33

PyLlama, Release 1.0

• in the circular polarisation basis (circ=False):

[︂
𝑇𝑅𝐶𝑃 to 𝑅𝐶𝑃 𝑇𝐿𝐶𝑃 to 𝑅𝐶𝑃

𝑇𝑅𝐶𝑃 to 𝐿𝐶𝑃 𝑇𝐿𝐶𝑃 to 𝐿𝐶𝑃

]︂
class pyllama.Model(n_entry, n_exit, wl_nm, theta_in_rad)

This class and its children enable the user to construct Structures automatically from given parameters. The
class Model can be viewed as an abstract class that defines parameters and methods common to all its children;
however, it is possible to create an instance of Model: it will have an empty Structure and its Layers
(Model.structure.layers) can be added manually (Structure.add_layer()). The parameters of
Models are:

Parameters

• n_entry (float) – the refractive index of the stack’s entry isotropic semi-infinite
medium

• n_exit (float) – the refractive index of the stack’s exit isotropic semi-infinite medium

• wl_nm (float) – the wavelength in nanometers

• theta_in_rad (float) – the angle of incidence in radians

copy_as_stack()
This function retrieves the permittivity and the thickness of the Structure created by the Model and
creates an identical non-periodic StackModel (if the Model was periodic, the StackModel contains
multiple times the same layers, but no periodic pattern to repeat).

Returns a StackModel

get_refl_trans(circ=False, method=’SM’)
This function calculates the Model’s reflectance in the linear or circular polarisation basis, with the method
chosen by the user.

Parameters

• circ (bool) – False to express results in the linear polarisation basis, True to express
results in the circular polarisation basis

• method (string) – the matrix method to use for the calculation:

– "SM" for the scattering matrix method

– "TM" for the transfer matrix method with the eigenvectors and eigenvalues

– "EM" for the transfer matrix method with the direct exponential of Berreman’s matrix

Returns

reflectance: 2x2 Numpy array whose values correspond to:

• in the linear polarisation basis (circ=False):

[︂
𝑅𝑝 to 𝑝 𝑅𝑠 to 𝑝

𝑅𝑝 to 𝑠 𝑅𝑠 to 𝑠

]︂
• in the circular polarisation basis (circ=False):

[︂
𝑅𝑅𝐶𝑃 to 𝑅𝐶𝑃 𝑅𝐿𝐶𝑃 to 𝑅𝐶𝑃

𝑅𝑅𝐶𝑃 to 𝐿𝐶𝑃 𝑅𝐿𝐶𝑃 to 𝐿𝐶𝑃

]︂

34 Chapter 8. Documentation

PyLlama, Release 1.0

Returns

transmittance: 2x2 Numpy array whose values correspond to:

• in the linear polarisation basis (circ=False):

[︂
𝑇𝑝 to 𝑝 𝑇𝑠 to 𝑝

𝑇𝑝 to 𝑠 𝑇𝑠 to 𝑠

]︂
• in the circular polarisation basis (circ=False):

[︂
𝑇𝑅𝐶𝑃 to 𝑅𝐶𝑃 𝑇𝐿𝐶𝑃 to 𝑅𝐶𝑃

𝑇𝑅𝐶𝑃 to 𝐿𝐶𝑃 𝑇𝐿𝐶𝑃 to 𝐿𝐶𝑃

]︂

class pyllama.SlabModel(eps, thickness_nm, n_entry, n_exit, wl_nm, theta_in_rad, rotangle_rad=0,
rotaxis=’z’)

This class represents a homogeneous slab of arbitrary permittivity.

Parameters

• eps (ndarray) – permittivity tensor, 3x3 Numpy array

• thickness_nm (float) – thickness in nanometers

• n_entry (float) – the refractive index of the stack’s entry isotropic semi-infinite
medium

• n_exit (float) – the refractive index of the stack’s exit isotropic semi-infinite medium

• wl_nm (float) – the wavelength in nanometers

• theta_in_rad (float) – the angle of incidence in radians

• rotangle_rad (float) – the rotation angle to apply to the permittivity tensor, in radians

• rotaxis (ndarray) – the rotation axis, a one-dimensional Numpy array of length 3 (or
the string 'x', 'y' or 'z')

class pyllama.Spectrum(wl_nm_list, model_type, model_parameters)
This class implements the modelling of a multilayer stack over a range of wavelength and provide tools for
calculating reflection spectra with the choice of the polarisation basis and for exporting the data. Spectrum
contains an initially-empty dictionary Spectrum.data that will be filled with the calculated reflection spectra
and additional data.

Parameters

• wl_nm_list (ndarray) – a list (or array or range) of wavelengths (integers or floats),
for example range(400, 800)

• model_type (string) – the name of the model to use. These include:

– "CholestericModel"

– "SlabModel"

– "StackModel"

– "StackOpticalThicknessModel"

• model_parameters (dict) – a dictionary containing the list of parameters required to
create the chosen Model,

35

PyLlama, Release 1.0

except the wavelength. See the chosen Model’s documentation to know how to construct the dictionary.

add_result(key, value)
This function add an entry to the dictionary Spectrum.data. This entry will be included in the content
that is saved by Spectrum.export().

Parameters

• key (string) – the key for the value to add to the dictionary

• value – the value to add (any type)

calculate_refl_trans(circ=False, method=’SM’, talk=False)
This function creates the required Model and calculates the reflection spectrum in the linear (default) or
circular polarisation basis, usinq a chosen method (by default the scattering matrix method). The results
are stored in the initially empty dictionary Spectrum.data. The values of the results correspond to:

• in the linear polarisation basis (circ=False):

– Spectrum.data["R_p_to_p"]: reflection spectrum for incoming 𝑝-polarisation to outgo-
ing 𝑝-polarisation, 1d Numpy array

– Spectrum.data["R_p_to_s"]: reflection spectrum for incoming 𝑝-polarisation to outgo-
ing 𝑠-polarisation, 1d Numpy array

– Spectrum.data["R_s_to_p"]: reflection spectrum for incoming 𝑠-polarisation to outgo-
ing 𝑝-polarisation, 1d Numpy array

– Spectrum.data["R_s_to_s"]: reflection spectrum for incoming 𝑠-polarisation to outgo-
ing 𝑠-polarisation, 1d Numpy array

• in the circular polarisation basis (circ=False):

– Spectrum.data["R_R_to_R"]: reflection spectrum for incoming 𝑅𝐶𝑃 -polarisation to
outgoing 𝑅𝐶𝑃 -polarisation, 1d Numpy array

– Spectrum.data["R_R_to_L"]: reflection spectrum for incoming 𝑅𝐶𝑃 -polarisation to
outgoing 𝐿𝐶𝑃 -polarisation, 1d Numpy array

– Spectrum.data["R_L_to_R"]: reflection spectrum for incoming 𝐿𝐶𝑃 -polarisation to
outgoing 𝑅𝐶𝑃 -polarisation, 1d Numpy array

– Spectrum.data["R_L_to_L"]: reflection spectrum for incoming 𝐿𝐶𝑃 -polarisation to
outgoing 𝐿𝐶𝑃 -polarisation, 1d Numpy array

as well as time_elapsed (float) which calculates the time that it took to compute the spectrum.

Parameters

• circ (bool) – False to express results in the linear polarisation basis, True to express
results in the circular polarisation basis

• method (string) – the matrix method to use for the calculation:

– "SM" for the scattering matrix method

– "TM" for the transfer matrix method with the eigenvectors and eigenvalues

– "EM" for the transfer matrix method with the direct exponential of Berreman’s matrix

• talk (bool) – True (non-default) to display the computation progress, wavelength per
wavelength

export(path_out, with_param=True)
This function exports the Spectrum for further processing in MATLAB or Python, and stores it to the
specified path. The contents of Spectrum.data and Spectrum.wl_list are exported.

36 Chapter 8. Documentation

PyLlama, Release 1.0

Parameters

• path_out (string) – path of the file to save the spectrum. It must end with ".mat"
(to save in MATLAB-compatible format) or ".pck" (to save with Pickles in Python-
compatible format).

• with_param (bool) – True to save the Spectrum’s model parameters in addition to
the content of Spectrum.data,

False (default) to only save the content of Spectrum.data.

rename_result(old_key, new_key)
This function enables to rename one of the elements contained in Spectrum.data.

For example, the user may calculate the reflection spectrum with the scattering matrix method:

my_spectrum.calculate(method="SM")

then rename the keys in Spectrum.data with:

my_spectrum.rename_result("R_R_to_R", "R_R_to_R_SM")
my_spectrum.rename_result("R_R_to_L", "R_R_to_L_SM")
my_spectrum.rename_result("R_L_to_R", "R_L_to_R_SM")
my_spectrum.rename_result("R_L_to_L", "R_L_to_L_SM")
my_spectrum.rename_result("time_elapsed", "time_elpased_SM")

then calculate the reflection spectrum with the transfer matrix method:

Spectrum.calculate(method="TM")

then rename the keys in Spectrum.data with:

my_spectrum.rename_result("R_R_to_R", "R_R_to_R_TM")
my_spectrum.rename_result("R_R_to_L", "R_R_to_L_TM")
my_spectrum.rename_result("R_L_to_R", "R_L_to_R_TM")
my_spectrum.rename_result("R_L_to_L", "R_L_to_L_TM")
my_spectrum.rename_result("time_elapsed", "time_elpased_TM")

in order to save results calculated with both matrix methods.

class pyllama.StackModel(eps_list, thickness_nm_list, n_entry, n_exit, wl_nm, theta_in_rad,
N_per=1)

This class represents a periodic multilayer stack where each layer has a given permittivity and thickness.

Parameters

• eps_list (list) – list of permittivity tensors for each layer, each a 3x3 Numpy array

• thickness_nm_list (list) – list of thicknesses in nanometers for each layer, each a
float

• n_entry (float) – the refractive index of the stack’s entry isotropic semi-infinite
medium

• n_exit (float) – the refractive index of the stack’s exit isotropic semi-infinite medium

• wl_nm (float) – the wavelength in nanometers

• theta_in_rad (float) – the angle of incidence in radians

• N_per (int) – the number of periods

37

PyLlama, Release 1.0

add_layer(new_layer)
This function adds a Layer to the multilayer stack represented by the StackModel.

Parameters new_layer (Layer) – Layer to add

add_layers(new_layers_list)
This function adds a list of Layers to the multilayer stack represented by the StackModel.

Parameters new_layers_list (list) – list of Layers to add

change_N_per(new_N_per)
This function changes the number of periods of the Bragg stack.

Parameters new_N_per (int) – new number of periods

extract_stack(index_first_layer, index_last_layer)
This function extracts a sub-stack from the StackModel (and return a new instance of StackModel).

Parameters

• index_first_layer – index of the first Layer

• index_last_layer – index of the last Layer to extract + 1 (if
index_first_layer = index_last_layer, the

sub-stack contains the Layer indexed index_first_layer) :return: a StackModel

rotate_layer(layer_index, rot_angle_rad, rot_axis=’z’, hold=False)
This function rotates a given Layer’s permittivity tensor: it creates the new rotated Layer and replaces
the non-rotated Layer by the rotated Layer in the Structure.

Parameters

• layer_index (int) – the index of the Layer to rotate

• rot_angle_rad (float) – the rotation angle in radians

• rot_axis (ndarray) – the rotation axis

• hold (bool) – when the user decides to hold (hold=True) the calculation of Berre-
man’s matrix, the eigenvalues

and eigenvectors, the user must then manually apply the functions to the Layer before calculating the
transfer or scattering matrix. This is exceptional practice. The default is hold=True.

rotate_layers(layer_number_list, rot_angle_rad_list, rot_axis=’z’)
This function applies the function rotate_layer on several Layers. See rotate_layer’s docu-
mentation.

class pyllama.StackOpticalThicknessModel(n_list, total_thickness_nm, n_entry, n_exit,
wl_nm, theta_in_rad, N_per=1)

This class represents a periodic multilayer stack where all layers are isotropic and have the same optical thick-
ness.

Parameters

• n_list (list) – list of refractive indices for each Layer, each a float

• total_thickness_nm (float) – totat thickness of the stack, in nanometers

• n_entry (float) – the refractive index of the stack’s entry isotropic semi-infinite
medium

• n_exit (float) – the refractive index of the stack’s exit isotropic semi-infinite medium

• wl_nm (float) – the wavelength in nanometers

38 Chapter 8. Documentation

PyLlama, Release 1.0

• theta_in_rad (float) – the angle of incidence in radians

• N_per (int) – the number of periods

class pyllama.Structure(entry, exit, Kx, Ky, Kz_entry, Kz_exit, k0, N_periods=1)
This class represents a multilayer stack by:

• a list of layers (instances of Layer), initially an empty list

• an isotropic entry semi-infinite medium (instance of HalfSpace)

• an isotropic exit semi-infinite medium (instance of HalfSpace)

• the number of periods 𝑁 , which means that the list of layers will be repeated 𝑁 times

Parameters

• Kx (float) – 𝑥-component of the normalised wavevector (stays the same throughought
the stack)

• Ky (float) – 𝑦-component of the normalised wavevector (equal to 0 by construction)

• Kz (float) – 𝑧-component of the normalised wavevector (changes in each layer)

• k0 (float) – normalisation factor of the wavevector:⎡⎣𝑘𝑥𝑘𝑦
𝑘𝑧

⎤⎦ = 𝑘0

⎡⎣𝐾𝑥

𝐾𝑦

𝐾𝑧

⎤⎦
which stays the same throughout the stack and depends on the wavelength

• N_periods (int) – the number of periods

add_layer(new_layer)
This function adds a Layer to the structure, provided it is compatible with the structure (see function
Structure.is_layer_compatible(layer)).

Parameters new_layer – a Layer to add

add_layers(new_layers_list)
This function adds Layers to the structure, provided they are compatible with the structure (see function
Structure.is_layer_compatible(layer)). Compatible Layers are added, non-compatible
Layers are not added.

Parameters new_layers_list – a list of Layers to add

static are_structures_compatible(structures_list)
This function checks if several structures are compatible with each other: the 𝑥-component of the nor-
malised wavevector and its normalisation factor 𝑘0 must stay the same in all structures.

Parameters structures_list (list) – a list of Structures

Return bool True if all Structures from the list are compatible, False otherwise

build_exponential_matrix()
This function calculates the transfer matrix of the system with the exponential of Berreman’s matrix.

Returns transfer matrix, a 4x4 Numpy array

static build_exponential_matrix_multi(struct_list, entry, exit)
This function calculates the transfer matrix with the direct exponential of Berreman’s matrix for a system
made of sub-stacks.

Returns transfer matrix, a 4x4 Numpy array

39

PyLlama, Release 1.0

build_scattering_matrix()
This function calculates the scattering matrix of the system.

Returns scattering matrix, a 4x4 Numpy array

static build_scattering_matrix_multi(struct_list, entry, exit)
This function calculates the scattering matrix for a system made of sub-stacks.

Returns scattering matrix, a 4x4 Numpy array

static build_scattering_matrix_to_next(layer_a, layer_b)
This function constructs the scattering matrix 𝑆𝑎𝑏 between two successive layers 𝑎 and 𝑏 by taking into
acount the following phenomena:

• the propagation through the first layer with the propagation matrix Q of layer_a

• the transition from the first layer (layer_a’s matrix P) and the second layer (layer_b’s matrix P)

Parameters

• layer_a (ndarray) – the first Layer

• layer_b (ndarray) – the second Layer

Returns partial scattering matrix from layer 𝑎 to layer 𝑏, a 4x4 Numpy array

build_transfer_matrix()
This function calculates the transfer matrix of the system with the matrices of eigenvalues and eigenvectors.

Returns transfer matrix, a 4x4 Numpy array

static build_transfer_matrix_multi(struct_list, entry, exit)
This function calculates the transfer matrix with the eigenvectors and eigenvalues for a system made of
sub-stacks.

Returns transfer matrix, a 4x4 Numpy array

static combine_scattering_matrices(S_ab, S_bc)
This function constructs the scattering matrix between three successive layers 𝑎, 𝑏 and 𝑐 by combining the
scattering matrices 𝑆𝑎𝑏 from layer 𝑎 to layer 𝑏 and 𝑆𝑏𝑐 from layer 𝑏 to layer 𝑐.

Parameters

• S_ab (ndarray) – the scattering matrix from layer 𝑎 to layer 𝑏, a 4x4 Numpy array

• S_bc (ndarray) – the scattering matrix from layer 𝑏 to layer 𝑐, a 4x4 Numpy array

Returns partial scattering matrix from layer 𝑎 to layer 𝑐, a 4x4 Numpy array

static fresnel_to_fresnel_circ(J_refl, J_trans)
This function converts reflection and transmission coefficients in the linear polarisation basis to reflection
and transmission coefficients in the circular polarisation bases.

Parameters

• J_refl (ndarray) – 2x2 Numpy array whose values correspond to:[︂
𝑟𝑝 to 𝑝 𝑟𝑠 to 𝑝

𝑟𝑝 to 𝑠 𝑟𝑠 to 𝑠

]︂

• J_trans (ndarray) – 2x2 Numpy array whose values correspond to:[︂
𝑡𝑝 to 𝑝 𝑡𝑠 to 𝑝

𝑡𝑝 to 𝑠 𝑡𝑠 to 𝑠

]︂

40 Chapter 8. Documentation

PyLlama, Release 1.0

Return J_refl_c 2x2 Numpy array whose values correspond to:[︂
𝑟𝑅𝐶𝑃 to 𝑅𝐶𝑃 𝑟𝐿𝐶𝑃 to 𝑅𝐶𝑃

𝑟𝑅𝐶𝑃 to 𝐿𝐶𝑃 𝑟𝐿𝐶𝑃 to 𝐿𝐶𝑃

]︂

Return J_trans_c 2x2 Numpy array whose values correspond to:[︂
𝑡𝑅𝐶𝑃 to 𝑅𝐶𝑃 𝑡𝐿𝐶𝑃 to 𝑅𝐶𝑃

𝑡𝑅𝐶𝑃 to 𝐿𝐶𝑃 𝑡𝐿𝐶𝑃 to 𝐿𝐶𝑃

]︂
get_fresnel(method=’SM’)

This function calculates the Structure’s reflection and transmission coefficients in the linear polarisa-
tion basis, with the method chosen by the user.

Parameters method (string) – the matrix method to use for the calculation:

• "SM" for the scattering matrix method

• "TM" for the transfer matrix method with the eigenvectors and eigenvalues

• "EM" for the transfer matrix method with the direct exponential of Berreman’s matrix

Return J_refl 2x2 Numpy array whose values correspond to:[︂
𝑟𝑝 to 𝑝 𝑟𝑠 to 𝑝

𝑟𝑝 to 𝑠 𝑟𝑠 to 𝑠

]︂

Return J_trans 2x2 Numpy array whose values correspond to:[︂
𝑡𝑝 to 𝑝 𝑡𝑠 to 𝑝

𝑡𝑝 to 𝑠 𝑡𝑠 to 𝑠

]︂
static get_fresnel_multi(structures_list, entry, exit, method=’SM’)

This function calculates reflection and transmission coefficients for a system made of a list of Structures
in the linear polarisation basis, with the method chosen by the user.

Parameters

• structures_list (list) – list of multiple Structures that constitute the stack.
Their respective entry and exit HalfSpaces will be ignored.

• entry – instance of HalfSpace that constitutes the stack’s entry semi-infinite medium

• exit – instance of HalfSpace that constitutes the stack’s exit semi-infinite medium

• method (string) – the matrix method to use for the calculation:

– "SM" for the scattering matrix method

– "TM" for the transfer matrix method with the eigenvectors and eigenvalues

– "EM" for the transfer matrix method with the direct exponential of Berreman’s matrix

Return J_refl 2x2 Numpy array whose values correspond to:[︂
𝑟𝑝 to 𝑝 𝑟𝑠 to 𝑝

𝑟𝑝 to 𝑠 𝑟𝑠 to 𝑠

]︂

Return J_trans 2x2 Numpy array whose values correspond to:[︂
𝑡𝑝 to 𝑝 𝑡𝑠 to 𝑝

𝑡𝑝 to 𝑠 𝑡𝑠 to 𝑠

]︂

41

PyLlama, Release 1.0

get_refl_trans(circ=False, method=’SM’)
This function calculates the Structure’s reflectance in the linear or circular polarisation basis, with the
method chosen by the user.

Parameters

• circ (bool) – False to express results in the linear polarisation basis, True to express
results in the circular polarisation basis

• method (string) – the matrix method to use for the calculation:

– "SM" for the scattering matrix method

– "TM" for the transfer matrix method with the eigenvectors and eigenvalues

– "EM" for the transfer matrix method with the direct exponential of Berreman’s matrix

Returns

reflectance: 2x2 Numpy array whose values correspond to:

• in the linear polarisation basis (circ=False):

[︂
𝑅𝑝 to 𝑝 𝑅𝑠 to 𝑝

𝑅𝑝 to 𝑠 𝑅𝑠 to 𝑠

]︂
• in the circular polarisation basis (circ=False):

[︂
𝑅𝑅𝐶𝑃 to 𝑅𝐶𝑃 𝑅𝐿𝐶𝑃 to 𝑅𝐶𝑃

𝑅𝑅𝐶𝑃 to 𝐿𝐶𝑃 𝑅𝐿𝐶𝑃 to 𝐿𝐶𝑃

]︂

Returns

transmittance: 2x2 Numpy array whose values correspond to:

• in the linear polarisation basis (circ=False):

[︂
𝑇𝑝 to 𝑝 𝑇𝑠 to 𝑝

𝑇𝑝 to 𝑠 𝑇𝑠 to 𝑠

]︂
• in the circular polarisation basis (circ=False):

[︂
𝑇𝑅𝐶𝑃 to 𝑅𝐶𝑃 𝑇𝐿𝐶𝑃 to 𝑅𝐶𝑃

𝑇𝑅𝐶𝑃 to 𝐿𝐶𝑃 𝑇𝐿𝐶𝑃 to 𝐿𝐶𝑃

]︂

static get_refl_trans_multi(structures_list, entry, exit, circ=False, method=’SM’)
This function calculates reflectance of a system made of a list of Structures in the linear or circular polari-
sation basis, with the method chosen by the user.

Parameters

• structures_list (list) – list of multiple Structures that constitute the stack.
Their respective entry and exit HalfSpaces will be ignored.

• entry – instance of HalfSpace that constitutes the stack’s entry semi-infinite medium

• exit – instance of HalfSpace that constitutes the stack’s exit semi-infinite medium

42 Chapter 8. Documentation

PyLlama, Release 1.0

• circ (bool) – False to express results in the linear polarisation basis, True to express
results in the circular polarisation basis

• method (string) – the matrix method to use for the calculation:

– "SM" for the scattering matrix method

– "TM" for the transfer matrix method with the eigenvectors and eigenvalues

– "EM" for the transfer matrix method with the direct exponential of Berreman’s matrix

Returns

reflectance: 2x2 Numpy array whose values correspond to:

• in the linear polarisation basis (circ=False):

[︂
𝑅𝑝 to 𝑝 𝑅𝑠 to 𝑝

𝑅𝑝 to 𝑠 𝑅𝑠 to 𝑠

]︂
• in the circular polarisation basis (circ=False):

[︂
𝑅𝑅𝐶𝑃 to 𝑅𝐶𝑃 𝑅𝐿𝐶𝑃 to 𝑅𝐶𝑃

𝑅𝑅𝐶𝑃 to 𝐿𝐶𝑃 𝑅𝐿𝐶𝑃 to 𝐿𝐶𝑃

]︂

Returns

transmittance: 2x2 Numpy array whose values correspond to:

• in the linear polarisation basis (circ=False):

[︂
𝑇𝑝 to 𝑝 𝑇𝑠 to 𝑝

𝑇𝑝 to 𝑠 𝑇𝑠 to 𝑠

]︂
• in the circular polarisation basis (circ=False):

[︂
𝑇𝑅𝐶𝑃 to 𝑅𝐶𝑃 𝑇𝐿𝐶𝑃 to 𝑅𝐶𝑃

𝑇𝑅𝐶𝑃 to 𝐿𝐶𝑃 𝑇𝐿𝐶𝑃 to 𝐿𝐶𝑃

]︂

is_layer_compatible(layer)
This function checks if the layer layer is compatible with the structure: the 𝑥-component of the nor-
malised wavevector and its normalisation factor 𝑘0 must stay the same throughout the stack.

Parameters layer – a Layer

Return bool True if the layer is compatible with the structure, False otherwise

remove_layer(layer_index)
This function removes from the Structure the Layer at the index layer_index.

Parameters layer_index (int) – index of the Layer to remove

replace_layer(layer_index, new_layer)
This function replaces the Layer at the index layer_index by the Layer new_layer provided it is
compatible with the structure (see function Structure.is_layer_compatible(layer)).

Parameters

43

PyLlama, Release 1.0

• layer_index (int) – index of the Layer to replace

• new_layer – Layer to add

class pyllama.Wave(epsilon, Kx, Ex, Ey, Hx, Hy)
This class represents a partial wave in a layer of the multilayer stack with:

• its electric field

• its magnetic field

• its Poynting vector

• the 𝑥- (tangential) component of its normalised wavevector

Parameters

• epsilon (ndarray) – permittivity tensor: a 3x3 Numpy array

• Kx (float) – 𝑥-component of the normalised wavevector

• Ex (float) – 𝑥-component of the electric field

• Ey (float) – 𝑦-component of the electric field

• Hx (float) – 𝑥-component of the magnetic field

• Hy (float) – 𝑦-component of the magnetic field

static calc_Ez_Hz(epsilon, Kx, Ex, Ey, Hy)
This function calculates the 𝑧-components of the electric and magnetic fields of the Wave

calc_cp_elec()
This function calculates the parameter Cp, used to sort a pair of partial waves between s and p polarisations.
:return: Cp = |Ex| ** 2 / (|Ex|**2 + |Ey|**2)

calc_cp_poynting()
This function calculates the parameter Cp, used to sort a pair of partial waves between s-like and p-like
polarisations. :return: Cp = |Sx| ** 2 / (|Sx|**2 + |Sy|**2)

calc_poynting()
This function calculates the Poynting vector of the Wave

static matrix_to_waves(mat, epsilon, Kx)
Given a layer’s 4 eigenvectors in a 4x4 Numpy array where each column corresponds to a column vector
𝜓 = [𝐸𝑥, 𝐻𝑦, 𝐸𝑦,−𝐻𝑥], this function returns a list of the 4 corresponding Waves, which are easier to
manipulate when electric fields, magnetic fields and Poynting vectors need to be accessed.

Parameters

• mat (ndarray) – 4x4 Numpy array of 4 eigenvectors 𝜓0, 𝜓1, 𝜓2 and 𝜓3 whose values
correspond to: ⎡⎢⎢⎣

𝐸𝑥, 0 𝐸𝑥, 1 𝐸𝑥, 2 𝐸𝑥, 3

𝐻𝑦, 0 𝐻𝑦, 1 𝐻𝑦, 2 𝐻𝑦, 3

𝐸𝑦, 0 𝐸𝑦, 1 𝐸𝑦, 2 𝐸𝑦, 3

−𝐻𝑥, 0 −𝐻𝑥, 1 −𝐻𝑥, 2 −𝐻𝑥, 3

⎤⎥⎥⎦
• epsilon (ndarray) – permittivity tensor: 3x3 Numpy array

• Kx (float) – the 𝑥- (tangential) component of its normalised wavevector

Returns list of 4 corresponding Waves [w_0, w_1, w_2, w_3]

44 Chapter 8. Documentation

PyLlama, Release 1.0

static waves_to_matrix(w_list, norm=False)
Given a layer’s 4 partial waves as Waves objects, this function returns a matrix where the components
𝐸𝑥, 𝐸𝑦 , 𝐻𝑥 and 𝐻𝑦 are arranged so that the matrix can be used as a transition matrix for the layer. The
function extracts a vector 𝜓 = [𝐸𝑥, 𝐻𝑦, 𝐸𝑦,−𝐻𝑥] for each of the 4 waves and formats them into a matrix
where each column is a 𝜓.

Parameters

• w_list (list) – list of 4 partial waves Waves [w_0, w_1, w_2, w_3]

• norm (bool) – set to True to normalise each 𝜓 to a modulus of 1, otherwive set to False.
Must be set to False for the partial waves of the HalfSpaces.

Returns

4x4 Numpy array of 4 eigenvectors 𝜓0, 𝜓1, 𝜓2 and 𝜓3 whose values correspond to:⎡⎢⎢⎣
𝐸𝑥, 0 𝐸𝑥, 1 𝐸𝑥, 2 𝐸𝑥, 3

𝐻𝑦, 0 𝐻𝑦, 1 𝐻𝑦, 2 𝐻𝑦, 3

𝐸𝑦, 0 𝐸𝑦, 1 𝐸𝑦, 2 𝐸𝑦, 3

−𝐻𝑥, 0 −𝐻𝑥, 1 −𝐻𝑥, 2 −𝐻𝑥, 3

⎤⎥⎥⎦
pyllama.rot_mat(axis=array([0, 0, 1]), theta_rad=0)

This function builds a rotation matrix for a given angle around a given axis accordung to https://en.wikipedia.
org/wiki/Rotation_matrix.

Parameters

• axis (ndarray) – rotation axis: a one-dimensional Numpy array of length 3 (or the string
'x', 'y' or 'z')

• theta_rad (float) – rotation angle (in radians) around the rotation axis axis

Returns a 3x3 Numpy array rotation matrix

45

https://en.wikipedia.org/wiki/Rotation_matrix
https://en.wikipedia.org/wiki/Rotation_matrix

PyLlama, Release 1.0

46 Chapter 8. Documentation

CHAPTER 9

Indices and tables

• genindex

• modindex

• search

47

PyLlama, Release 1.0

48 Chapter 9. Indices and tables

Python Module Index

p
pyllama, 31

49

PyLlama, Release 1.0

50 Python Module Index

Index

A
add_layer() (pyllama.StackModel method), 37
add_layer() (pyllama.Structure method), 39
add_layers() (pyllama.StackModel method), 38
add_layers() (pyllama.Structure method), 39
add_result() (pyllama.Spectrum method), 36
are_structures_compatible() (pyl-

lama.Structure static method), 39

B
build_exponential_matrix() (pyl-

lama.Structure method), 39
build_exponential_matrix_multi() (pyl-

lama.Structure static method), 39
build_P_Q() (pyllama.Layer method), 32
build_scattering_matrix() (pyllama.Structure

method), 39
build_scattering_matrix_multi() (pyl-

lama.Structure static method), 40
build_scattering_matrix_to_next() (pyl-

lama.Structure static method), 40
build_transfer_matrix() (pyllama.Structure

method), 40
build_transfer_matrix_multi() (pyl-

lama.Structure static method), 40

C
calc_cp_elec() (pyllama.Wave method), 44
calc_cp_poynting() (pyllama.Wave method), 44
calc_Ez_Hz() (pyllama.Wave static method), 44
calc_poynting() (pyllama.Wave method), 44
calculate_refl_trans() (pyllama.Spectrum

method), 36
change_N_per() (pyllama.StackModel method), 38
CholestericModel (class in pyllama), 31
combine_scattering_matrices() (pyl-

lama.Structure static method), 40
copy_as_stack() (pyllama.MixedModel method),

33

copy_as_stack() (pyllama.Model method), 34

E
export() (pyllama.Spectrum method), 36
extract_stack() (pyllama.StackModel method), 38

F
fresnel_to_fresnel_circ() (pyllama.Structure

static method), 40

G
get_fresnel() (pyllama.Structure method), 41
get_fresnel_multi() (pyllama.Structure static

method), 41
get_refl_trans() (pyllama.MixedModel method),

33
get_refl_trans() (pyllama.Model method), 34
get_refl_trans() (pyllama.Structure method), 42
get_refl_trans_multi() (pyllama.Structure

static method), 42

H
HalfSpace (class in pyllama), 31

I
is_layer_compatible() (pyllama.Structure

method), 43

L
Layer (class in pyllama), 32

M
matrix_to_waves() (pyllama.Wave static method),

44
MixedModel (class in pyllama), 32
Model (class in pyllama), 34

P
pyllama (module), 31

51

PyLlama, Release 1.0

R
remove_layer() (pyllama.Structure method), 43
rename_result() (pyllama.Spectrum method), 37
replace_layer() (pyllama.Structure method), 43
rot_mat() (in module pyllama), 45
rotate_layer() (pyllama.StackModel method), 38
rotate_layers() (pyllama.StackModel method), 38
rotate_permittivity() (pyllama.Layer static

method), 32

S
SlabModel (class in pyllama), 35
Spectrum (class in pyllama), 35
StackModel (class in pyllama), 37
StackOpticalThicknessModel (class in pyl-

lama), 38
Structure (class in pyllama), 39

W
Wave (class in pyllama), 44
waves_to_matrix() (pyllama.Wave static method),

44

52 Index

	Getting started
	Overview
	Code organisation
	How to install
	Library for cholesterics

	Creating a multilayer stack
	From scratch: the technical way
	With the Model class: the flexible way
	With the Spectrum class: the automated way

	Calculating the reflection and transmission spectra of a stack
	From scratch: the technical way
	With the Model class: the flexible way
	With the Spectrum class: the automated way

	Quick cholesteric tutorial
	Choosing which matrix method to use
	Creating a custom Model class
	Anatomy of the Model class
	Creating a custom child
	Pairing the custom child with Spectrum

	Acknowledgements
	Authors
	Referencing
	Financial support

	Documentation
	Indices and tables
	Python Module Index
	Index

