

Welcome to PyLlama’s documentation!

Contents:

	Getting started
	Overview

	Code organisation

	How to install

	Library for cholesterics

	Creating a multilayer stack
	From scratch: the technical way

	With the Model class: the flexible way

	With the Spectrum class: the automated way

	Calculating the reflection and transmission spectra of a stack
	From scratch: the technical way

	With the Model class: the flexible way

	With the Spectrum class: the automated way

	Quick cholesteric tutorial

	Choosing which matrix method to use

	Creating a custom Model class
	Anatomy of the Model class

	Creating a custom child

	Pairing the custom child with Spectrum

	Acknowledgements
	Authors

	Referencing

	Financial support

Documentation

	
class pyllama.CholestericModel(chole, n_e, n_o, n_entry, n_exit, wl_nm, N_per, theta_in_rad)

	This class represents a cholesteric liquid crystal with a multilayer stack of rotating nematic layers, constructed
from a Cholesteric physical model.

	Parameters

	
	chole (Cholesteric) – a Cholesteric object from the Cholesteric library

	n_e (float) – the extraordinary refractive index

	n_o (float) – the ordinary refractive index

	n_entry (float) – the refractive index of the stack’s entry isotropic semi-infinite medium

	n_exit (float) – the refractive index of the stack’s exit isotropic semi-infinite medium

	N_per (int) – the number of periods. The cholesteric chole may already represent more than one helicoid: the layers created from the helicoid(s) in chole represent the periodic unit, which is repeated N_per times in CholestericModel.

	wl_nm (float) – the wavelength in nanometers

	theta_in_rad (float) – the angle of incidence in radians

	
class pyllama.HalfSpace(epsilon, Kx, Kz, k0, category='isotropic')

	This class represents an isotropic semi-infinite medium before or after a multilayer stack and enables to build
the partial waves (eigenvalues, eigenvectors) of the medium. HalfSpace represents the physical layer for one
specific wavelength (the material may be dispersive).

	Parameters

	
	epsilon (ndarray) – permittivity tensor: a 3x3 Numpy array

	Kx (float) – [image: x]-component of the normalised wavevector

	k0 (float) – normalisation factor of the wavevector: the [image: x]-component of the wavevector is equal to
[image: k_x = k_0 K_x]

	category (str) – always "isotropic" in the code’s 1.0 version

	
class pyllama.Layer(epsilon, thickness_nm, Kx, k0, rot_angle_rad=0, rot_axis='z', hold=False, numerical_method='numpy')

	This class represents a homogeneous layer in a multilayer stack and enables to build Berreman’s matrix
as well as the partial waves (eigenvalues, eigenvectors) of the layer. The layer is made of a
non-magnetic and non-optically acvive material. Layer represents the physical layer for one specific
wavelength (the material may be dispersive). Its parameters are:

	Parameters

	
	epsilon (ndarray) – permittivity tensor, a 3x3 Numpy array

	thickness_nm (float) – thickness of the Layer in nanometers

	Kx (float) – [image: x]-component of the normalised wavevector

	k0 (float) – normalisation factor of the wavevector: the [image: x]-component of the wavevector is equal to
[image: k_x = k_0 K_x]

	rot_angle_rad (float) – rotation angle of the layer (in radians) around the axis rot_axis

	rot_axis (ndarray) – rotation axis: a one-dimensional Numpy array of length 3 (or the string 'x', 'y' or 'z')

	hold (bool) – when the user decides to hold (hold=True) the calculation of Berreman’s matrix, the eigenvalues
and eigenvectors, the user must then manually apply the functions to the Layer before calculating the
transfer or scattering matrix. This is exceptional practice. The default is hold=True.

	numerical_method (String) – indicates the package to use to calculate the eigenvectors and eigenvalues of
the layer; either 'numpy' (default) or 'sympy'

	
build_P_Q()

	This function constructs the interface matrix [image: P] and the propagation matrix [image: Q] for one Layer.

	The interface matrix [image: P] describes the change of medium.

	The propagation matrix [image: Q] describes the propagation in the thickness of the medium and the phase
build-up.

	Return ndarray P

	interface matrix [image: P], 3x3 Numpy array

	Return ndarray Q

	propagation matrix [image: Q], 3x3 Numpy array

	
static rotate_permittivity(eps, angle_rad, axis='z')

	This function calculates a rotated permittivity tensor.

	Parameters

	
	eps (ndarray) – permittivity tensor: a 3x3 Numpy array

	angle_rad (float) – rotation angle (in radians) around the rotation axis axis

	axis (ndarray) – rotation axis: a one-dimensional Numpy array of length 3 (or the string 'x', 'y' or 'z')

	Returns

	rotated permittivity tensor: a 3x3 Numpy array

	
class pyllama.MixedModel(models_list, n_entry, n_exit, wl_nm, theta_in_rad)

	This class represents the combination of several Models with their sub-periodicities, given in a list of
Models. The entry and exit HalfSpaces of these Models are ignored and replaced
by these of the MixedModel. Kx and k0 must be identical throughout all stacked models, which is checked
at the initialisation; the Models that don’t fit will be discarded and a warning will be issued.

	Parameters

	
	models_list (list) – a list of Models (models_list[0] is on top of the stack, after the entry HalfSpace)

	n_entry (float) – the refractive index of the stack’s entry isotropic semi-infinite medium

	n_exit (float) – the refractive index of the stack’s exit isotropic semi-infinite medium

	wl_nm (float) – the wavelength in nanometers

	theta_in_rad (float) – the angle of incidence in radians

	
copy_as_stack()

	This function retrieves the permittivity and the thickness of the Structure created by the Model and
creates an identical non-periodic StackModel (if the Model was periodic, the StackModel contains
multiple times the same layers, but no periodic pattern to repeat).

	Returns

	a StackModel

	
get_refl_trans(circ=False, method='SM')

	This function calculates the Model’s reflectance in the linear or circular polarisation basis, with the
method chosen by the user.

	Parameters

	
	circ (bool) – False to express results in the linear polarisation basis, True to express results in
the circular polarisation basis

	method (string) – the matrix method to use for the calculation:

	"SM" for the scattering matrix method

	"TM" for the transfer matrix method with the eigenvectors and eigenvalues

	"EM" for the transfer matrix method with the direct exponential of Berreman’s matrix

	Returns

	reflectance: 2x2 Numpy array whose values correspond to:

	in the linear polarisation basis (circ=False):

[image: \begin{bmatrix} R_{p \: \text{to} \: p} & R_{s \: \text{to} \: p} \\ R_{p \: \text{to} \: s} & R_{s \: \text{to} \: s} \end{bmatrix}]

	in the circular polarisation basis (circ=False):

[image: \begin{bmatrix} R_{RCP \: \text{to} \: RCP} & R_{LCP \: \text{to} \: RCP} \\ R_{RCP \: \text{to} \: LCP} & R_{LCP \: \text{to} \: LCP} \end{bmatrix}]

	Returns

	transmittance: 2x2 Numpy array whose values correspond to:

	in the linear polarisation basis (circ=False):

[image: \begin{bmatrix} T_{p \: \text{to} \: p} & T_{s \: \text{to} \: p} \\ T_{p \: \text{to} \: s} & T_{s \: \text{to} \: s} \end{bmatrix}]

	in the circular polarisation basis (circ=False):

[image: \begin{bmatrix} T_{RCP \: \text{to} \: RCP} & T_{LCP \: \text{to} \: RCP} \\ T_{RCP \: \text{to} \: LCP} & T_{LCP \: \text{to} \: LCP} \end{bmatrix}]

	
class pyllama.Model(n_entry, n_exit, wl_nm, theta_in_rad)

	This class and its children enable the user to construct Structures automatically from given parameters.
The class Model can be viewed as an abstract class that defines parameters and methods common to all its
children; however, it is possible to create an instance of Model: it will have an empty Structure and its
Layers (Model.structure.layers) can be added manually (Structure.add_layer()). The parameters of Models are:

	Parameters

	
	n_entry (float) – the refractive index of the stack’s entry isotropic semi-infinite medium

	n_exit (float) – the refractive index of the stack’s exit isotropic semi-infinite medium

	wl_nm (float) – the wavelength in nanometers

	theta_in_rad (float) – the angle of incidence in radians

	
copy_as_stack()

	This function retrieves the permittivity and the thickness of the Structure created by the Model and
creates an identical non-periodic StackModel (if the Model was periodic, the StackModel contains
multiple times the same layers, but no periodic pattern to repeat).

	Returns

	a StackModel

	
get_refl_trans(circ=False, method='SM')

	This function calculates the Model’s reflectance in the linear or circular polarisation basis, with the
method chosen by the user.

	Parameters

	
	circ (bool) – False to express results in the linear polarisation basis, True to express results in
the circular polarisation basis

	method (string) – the matrix method to use for the calculation:

	"SM" for the scattering matrix method

	"TM" for the transfer matrix method with the eigenvectors and eigenvalues

	"EM" for the transfer matrix method with the direct exponential of Berreman’s matrix

	Returns

	reflectance: 2x2 Numpy array whose values correspond to:

	in the linear polarisation basis (circ=False):

[image: \begin{bmatrix} R_{p \: \text{to} \: p} & R_{s \: \text{to} \: p} \\ R_{p \: \text{to} \: s} & R_{s \: \text{to} \: s} \end{bmatrix}]

	in the circular polarisation basis (circ=False):

[image: \begin{bmatrix} R_{RCP \: \text{to} \: RCP} & R_{LCP \: \text{to} \: RCP} \\ R_{RCP \: \text{to} \: LCP} & R_{LCP \: \text{to} \: LCP} \end{bmatrix}]

	Returns

	transmittance: 2x2 Numpy array whose values correspond to:

	in the linear polarisation basis (circ=False):

[image: \begin{bmatrix} T_{p \: \text{to} \: p} & T_{s \: \text{to} \: p} \\ T_{p \: \text{to} \: s} & T_{s \: \text{to} \: s} \end{bmatrix}]

	in the circular polarisation basis (circ=False):

[image: \begin{bmatrix} T_{RCP \: \text{to} \: RCP} & T_{LCP \: \text{to} \: RCP} \\ T_{RCP \: \text{to} \: LCP} & T_{LCP \: \text{to} \: LCP} \end{bmatrix}]

	
class pyllama.SlabModel(eps, thickness_nm, n_entry, n_exit, wl_nm, theta_in_rad, rotangle_rad=0, rotaxis='z')

	This class represents a homogeneous slab of arbitrary permittivity.

	Parameters

	
	eps (ndarray) – permittivity tensor, 3x3 Numpy array

	thickness_nm (float) – thickness in nanometers

	n_entry (float) – the refractive index of the stack’s entry isotropic semi-infinite medium

	n_exit (float) – the refractive index of the stack’s exit isotropic semi-infinite medium

	wl_nm (float) – the wavelength in nanometers

	theta_in_rad (float) – the angle of incidence in radians

	rotangle_rad (float) – the rotation angle to apply to the permittivity tensor, in radians

	rotaxis (ndarray) – the rotation axis, a one-dimensional Numpy array of length 3 (or the string 'x', 'y' or 'z')

	
class pyllama.Spectrum(wl_nm_list, model_type, model_parameters)

	This class implements the modelling of a multilayer stack over a range of wavelength and provide tools for calculating
reflection spectra with the choice of the polarisation basis and for exporting the data. Spectrum contains an
initially-empty dictionary Spectrum.data that will be filled with the calculated reflection spectra and additional data.

	Parameters

	
	wl_nm_list (ndarray) – a list (or array or range) of wavelengths (integers or floats), for example range(400, 800)

	model_type (string) – the name of the model to use. These include:

	"CholestericModel"

	"SlabModel"

	"StackModel"

	"StackOpticalThicknessModel"

	model_parameters (dict) – a dictionary containing the list of parameters required to create the chosen Model,

except the wavelength. See the chosen Model’s documentation to know how to construct the dictionary.

	
add_result(key, value)

	This function add an entry to the dictionary Spectrum.data. This entry will be included in the content
that is saved by Spectrum.export().

	Parameters

	
	key (string) – the key for the value to add to the dictionary

	value – the value to add (any type)

	
calculate_refl_trans(circ=False, method='SM', talk=False)

	This function creates the required Model and calculates the reflection spectrum in the linear (default) or
circular polarisation basis, usinq a chosen method (by default the scattering matrix method). The results are
stored in the initially empty dictionary Spectrum.data. The values of the results correspond to:

	in the linear polarisation basis (circ=False):

	Spectrum.data["R_p_to_p"]: reflection spectrum for incoming [image: p]-polarisation to outgoing [image: p]-polarisation, 1d Numpy array

	Spectrum.data["R_p_to_s"]: reflection spectrum for incoming [image: p]-polarisation to outgoing [image: s]-polarisation, 1d Numpy array

	Spectrum.data["R_s_to_p"]: reflection spectrum for incoming [image: s]-polarisation to outgoing [image: p]-polarisation, 1d Numpy array

	Spectrum.data["R_s_to_s"]: reflection spectrum for incoming [image: s]-polarisation to outgoing [image: s]-polarisation, 1d Numpy array

	in the circular polarisation basis (circ=False):

	Spectrum.data["R_R_to_R"]: reflection spectrum for incoming [image: RCP]-polarisation to outgoing [image: RCP]-polarisation, 1d Numpy array

	Spectrum.data["R_R_to_L"]: reflection spectrum for incoming [image: RCP]-polarisation to outgoing [image: LCP]-polarisation, 1d Numpy array

	Spectrum.data["R_L_to_R"]: reflection spectrum for incoming [image: LCP]-polarisation to outgoing [image: RCP]-polarisation, 1d Numpy array

	Spectrum.data["R_L_to_L"]: reflection spectrum for incoming [image: LCP]-polarisation to outgoing [image: LCP]-polarisation, 1d Numpy array

as well as time_elapsed (float) which calculates the time that it took to compute the spectrum.

	Parameters

	
	circ (bool) – False to express results in the linear polarisation basis, True to express results in
the circular polarisation basis

	method (string) – the matrix method to use for the calculation:

	"SM" for the scattering matrix method

	"TM" for the transfer matrix method with the eigenvectors and eigenvalues

	"EM" for the transfer matrix method with the direct exponential of Berreman’s matrix

	talk (bool) – True (non-default) to display the computation progress, wavelength per wavelength

	
export(path_out, with_param=True)

	This function exports the Spectrum for further processing in MATLAB or Python, and stores it to the specified path.
The contents of Spectrum.data and Spectrum.wl_list are exported.

	Parameters

	
	path_out (string) – path of the file to save the spectrum. It must end with ".mat" (to save in
MATLAB-compatible format) or ".pck" (to save with Pickles in Python-compatible format).

	with_param (bool) – True to save the Spectrum’s model parameters in addition to the content of Spectrum.data,

False (default) to only save the content of Spectrum.data.

	
rename_result(old_key, new_key)

	This function enables to rename one of the elements contained in Spectrum.data.

For example, the user may calculate the reflection spectrum with the scattering matrix method:

my_spectrum.calculate(method="SM")

then rename the keys in Spectrum.data with:

my_spectrum.rename_result("R_R_to_R", "R_R_to_R_SM")
my_spectrum.rename_result("R_R_to_L", "R_R_to_L_SM")
my_spectrum.rename_result("R_L_to_R", "R_L_to_R_SM")
my_spectrum.rename_result("R_L_to_L", "R_L_to_L_SM")
my_spectrum.rename_result("time_elapsed", "time_elpased_SM")

then calculate the reflection spectrum with the transfer matrix method:

Spectrum.calculate(method="TM")

then rename the keys in Spectrum.data with:

my_spectrum.rename_result("R_R_to_R", "R_R_to_R_TM")
my_spectrum.rename_result("R_R_to_L", "R_R_to_L_TM")
my_spectrum.rename_result("R_L_to_R", "R_L_to_R_TM")
my_spectrum.rename_result("R_L_to_L", "R_L_to_L_TM")
my_spectrum.rename_result("time_elapsed", "time_elpased_TM")

in order to save results calculated with both matrix methods.

	
class pyllama.StackModel(eps_list, thickness_nm_list, n_entry, n_exit, wl_nm, theta_in_rad, N_per=1)

	This class represents a periodic multilayer stack where each layer has a given permittivity and thickness.

	Parameters

	
	eps_list (list) – list of permittivity tensors for each layer, each a 3x3 Numpy array

	thickness_nm_list (list) – list of thicknesses in nanometers for each layer, each a float

	n_entry (float) – the refractive index of the stack’s entry isotropic semi-infinite medium

	n_exit (float) – the refractive index of the stack’s exit isotropic semi-infinite medium

	wl_nm (float) – the wavelength in nanometers

	theta_in_rad (float) – the angle of incidence in radians

	N_per (int) – the number of periods

	
add_layer(new_layer)

	This function adds a Layer to the multilayer stack represented by the StackModel.

	Parameters

	new_layer (Layer) – Layer to add

	
add_layers(new_layers_list)

	This function adds a list of Layers to the multilayer stack represented by the StackModel.

	Parameters

	new_layers_list (list) – list of Layers to add

	
change_N_per(new_N_per)

	This function changes the number of periods of the Bragg stack.

	Parameters

	new_N_per (int) – new number of periods

	
extract_stack(index_first_layer, index_last_layer)

	This function extracts a sub-stack from the StackModel (and return a new instance of StackModel).

	Parameters

	
	index_first_layer – index of the first Layer

	index_last_layer – index of the last Layer to extract + 1 (if index_first_layer = index_last_layer, the

sub-stack contains the Layer indexed index_first_layer)
:return: a StackModel

	
rotate_layer(layer_index, rot_angle_rad, rot_axis='z', hold=False)

	This function rotates a given Layer’s permittivity tensor: it creates the new rotated Layer and replaces
the non-rotated Layer by the rotated Layer in the Structure.

	Parameters

	
	layer_index (int) – the index of the Layer to rotate

	rot_angle_rad (float) – the rotation angle in radians

	rot_axis (ndarray) – the rotation axis

	hold (bool) – when the user decides to hold (hold=True) the calculation of Berreman’s matrix, the eigenvalues

and eigenvectors, the user must then manually apply the functions to the Layer before calculating the
transfer or scattering matrix. This is exceptional practice. The default is hold=True.

	
rotate_layers(layer_number_list, rot_angle_rad_list, rot_axis='z')

	This function applies the function rotate_layer on several Layers. See rotate_layer’s documentation.

	
class pyllama.StackOpticalThicknessModel(n_list, total_thickness_nm, n_entry, n_exit, wl_nm, theta_in_rad, N_per=1)

	This class represents a periodic multilayer stack where all layers are isotropic and have the same optical thickness.

	Parameters

	
	n_list (list) – list of refractive indices for each Layer, each a float

	total_thickness_nm (float) – totat thickness of the stack, in nanometers

	n_entry (float) – the refractive index of the stack’s entry isotropic semi-infinite medium

	n_exit (float) – the refractive index of the stack’s exit isotropic semi-infinite medium

	wl_nm (float) – the wavelength in nanometers

	theta_in_rad (float) – the angle of incidence in radians

	N_per (int) – the number of periods

	
class pyllama.Structure(entry, exit, Kx, Ky, Kz_entry, Kz_exit, k0, N_periods=1)

	This class represents a multilayer stack by:

	a list of layers (instances of Layer), initially an empty list

	an isotropic entry semi-infinite medium (instance of HalfSpace)

	an isotropic exit semi-infinite medium (instance of HalfSpace)

	the number of periods [image: N], which means that the list of layers will be repeated [image: N] times

	Parameters

	
	Kx (float) – [image: x]-component of the normalised wavevector (stays the same throughought the stack)

	Ky (float) – [image: y]-component of the normalised wavevector (equal to 0 by construction)

	Kz (float) – [image: z]-component of the normalised wavevector (changes in each layer)

	k0 (float) – normalisation factor of the wavevector:

[image: \begin{bmatrix} k_x \\ k_y \\ k_z \end{bmatrix} = k_0 \begin{bmatrix} K_x \\ K_y \\ K_z \end{bmatrix}]

which stays the same throughout the stack and depends on the wavelength

	N_periods (int) – the number of periods

	
add_layer(new_layer)

	This function adds a Layer to the structure, provided it is compatible with the structure (see function
Structure.is_layer_compatible(layer)).

	Parameters

	new_layer – a Layer to add

	
add_layers(new_layers_list)

	This function adds Layers to the structure, provided they are compatible with the structure (see function
Structure.is_layer_compatible(layer)). Compatible Layers are added, non-compatible Layers are not
added.

	Parameters

	new_layers_list – a list of Layers to add

	
static are_structures_compatible(structures_list)

	This function checks if several structures are compatible with each other: the [image: x]-component of the
normalised wavevector and its normalisation factor [image: k_0] must stay the same in all structures.

	Parameters

	structures_list (list) – a list of Structures

	Return bool

	True if all Structures from the list are compatible, False otherwise

	
build_exponential_matrix()

	This function calculates the transfer matrix of the system with the exponential of Berreman’s matrix.

	Returns

	transfer matrix, a 4x4 Numpy array

	
static build_exponential_matrix_multi(struct_list, entry, exit)

	This function calculates the transfer matrix with the direct exponential of Berreman’s matrix for a system made
of sub-stacks.

	Returns

	transfer matrix, a 4x4 Numpy array

	
build_scattering_matrix()

	This function calculates the scattering matrix of the system.

	Returns

	scattering matrix, a 4x4 Numpy array

	
static build_scattering_matrix_multi(struct_list, entry, exit)

	This function calculates the scattering matrix for a system made of sub-stacks.

	Returns

	scattering matrix, a 4x4 Numpy array

	
static build_scattering_matrix_to_next(layer_a, layer_b)

	This function constructs the scattering matrix [image: S_{ab}] between two successive layers [image: a] and
[image: b] by taking into acount the following phenomena:

	the propagation through the first layer with the propagation matrix Q of layer_a

	the transition from the first layer (layer_a’s matrix P) and the second layer (layer_b’s matrix P)

	Parameters

	
	layer_a (ndarray) – the first Layer

	layer_b (ndarray) – the second Layer

	Returns

	partial scattering matrix from layer [image: a] to layer [image: b], a 4x4 Numpy array

	
build_transfer_matrix()

	This function calculates the transfer matrix of the system with the matrices of eigenvalues and eigenvectors.

	Returns

	transfer matrix, a 4x4 Numpy array

	
static build_transfer_matrix_multi(struct_list, entry, exit)

	This function calculates the transfer matrix with the eigenvectors and eigenvalues for a system made of
sub-stacks.

	Returns

	transfer matrix, a 4x4 Numpy array

	
static combine_scattering_matrices(S_ab, S_bc)

	This function constructs the scattering matrix between three successive layers [image: a], [image: b] and
[image: c] by combining the scattering matrices [image: S_{ab}] from layer [image: a] to layer [image: b] and
[image: S_{bc}] from layer [image: b] to layer [image: c].

	Parameters

	
	S_ab (ndarray) – the scattering matrix from layer [image: a] to layer [image: b], a 4x4 Numpy array

	S_bc (ndarray) – the scattering matrix from layer [image: b] to layer [image: c], a 4x4 Numpy array

	Returns

	partial scattering matrix from layer [image: a] to layer [image: c], a 4x4 Numpy array

	
static fresnel_to_fresnel_circ(J_refl, J_trans)

	This function converts reflection and transmission coefficients in the linear polarisation basis to reflection
and transmission coefficients in the circular polarisation bases.

	Parameters

	
	J_refl (ndarray) – 2x2 Numpy array whose values correspond to:

[image: \begin{bmatrix} r_{p \: \text{to} \: p} & r_{s \: \text{to} \: p} \\ r_{p \: \text{to} \: s} & r_{s \: \text{to} \: s} \end{bmatrix}]

	J_trans (ndarray) – 2x2 Numpy array whose values correspond to:

[image: \begin{bmatrix} t_{p \: \text{to} \: p} & t_{s \: \text{to} \: p} \\ t_{p \: \text{to} \: s} & t_{s \: \text{to} \: s} \end{bmatrix}]

	Return J_refl_c

	2x2 Numpy array whose values correspond to:

[image: \begin{bmatrix} r_{RCP \: \text{to} \: RCP} & r_{LCP \: \text{to} \: RCP} \\ r_{RCP \: \text{to} \: LCP} & r_{LCP \: \text{to} \: LCP} \end{bmatrix}]

	Return J_trans_c

	2x2 Numpy array whose values correspond to:

[image: \begin{bmatrix} t_{RCP \: \text{to} \: RCP} & t_{LCP \: \text{to} \: RCP} \\ t_{RCP \: \text{to} \: LCP} & t_{LCP \: \text{to} \: LCP} \end{bmatrix}]

	
get_fresnel(method='SM')

	This function calculates the Structure’s reflection and transmission coefficients in the linear polarisation basis, with the
method chosen by the user.

	Parameters

	method (string) – the matrix method to use for the calculation:

	"SM" for the scattering matrix method

	"TM" for the transfer matrix method with the eigenvectors and eigenvalues

	"EM" for the transfer matrix method with the direct exponential of Berreman’s matrix

	Return J_refl

	2x2 Numpy array whose values correspond to:

[image: \begin{bmatrix} r_{p \: \text{to} \: p} & r_{s \: \text{to} \: p} \\ r_{p \: \text{to} \: s} & r_{s \: \text{to} \: s} \end{bmatrix}]

	Return J_trans

	2x2 Numpy array whose values correspond to:

[image: \begin{bmatrix} t_{p \: \text{to} \: p} & t_{s \: \text{to} \: p} \\ t_{p \: \text{to} \: s} & t_{s \: \text{to} \: s} \end{bmatrix}]

	
static get_fresnel_multi(structures_list, entry, exit, method='SM')

	This function calculates reflection and transmission coefficients for a system made of a list of Structures in the linear
polarisation basis, with the method chosen by the user.

	Parameters

	
	structures_list (list) – list of multiple Structures that constitute the stack. Their respective entry
and exit HalfSpaces will be ignored.

	entry – instance of HalfSpace that constitutes the stack’s entry semi-infinite medium

	exit – instance of HalfSpace that constitutes the stack’s exit semi-infinite medium

	method (string) – the matrix method to use for the calculation:

	"SM" for the scattering matrix method

	"TM" for the transfer matrix method with the eigenvectors and eigenvalues

	"EM" for the transfer matrix method with the direct exponential of Berreman’s matrix

	Return J_refl

	2x2 Numpy array whose values correspond to:

[image: \begin{bmatrix} r_{p \: \text{to} \: p} & r_{s \: \text{to} \: p} \\ r_{p \: \text{to} \: s} & r_{s \: \text{to} \: s} \end{bmatrix}]

	Return J_trans

	2x2 Numpy array whose values correspond to:

[image: \begin{bmatrix} t_{p \: \text{to} \: p} & t_{s \: \text{to} \: p} \\ t_{p \: \text{to} \: s} & t_{s \: \text{to} \: s} \end{bmatrix}]

	
get_refl_trans(circ=False, method='SM')

	This function calculates the Structure’s reflectance in the linear or circular polarisation basis, with the
method chosen by the user.

	Parameters

	
	circ (bool) – False to express results in the linear polarisation basis, True to express results in
the circular polarisation basis

	method (string) – the matrix method to use for the calculation:

	"SM" for the scattering matrix method

	"TM" for the transfer matrix method with the eigenvectors and eigenvalues

	"EM" for the transfer matrix method with the direct exponential of Berreman’s matrix

	Returns

	reflectance: 2x2 Numpy array whose values correspond to:

	in the linear polarisation basis (circ=False):

[image: \begin{bmatrix} R_{p \: \text{to} \: p} & R_{s \: \text{to} \: p} \\ R_{p \: \text{to} \: s} & R_{s \: \text{to} \: s} \end{bmatrix}]

	in the circular polarisation basis (circ=False):

[image: \begin{bmatrix} R_{RCP \: \text{to} \: RCP} & R_{LCP \: \text{to} \: RCP} \\ R_{RCP \: \text{to} \: LCP} & R_{LCP \: \text{to} \: LCP} \end{bmatrix}]

	Returns

	transmittance: 2x2 Numpy array whose values correspond to:

	in the linear polarisation basis (circ=False):

[image: \begin{bmatrix} T_{p \: \text{to} \: p} & T_{s \: \text{to} \: p} \\ T_{p \: \text{to} \: s} & T_{s \: \text{to} \: s} \end{bmatrix}]

	in the circular polarisation basis (circ=False):

[image: \begin{bmatrix} T_{RCP \: \text{to} \: RCP} & T_{LCP \: \text{to} \: RCP} \\ T_{RCP \: \text{to} \: LCP} & T_{LCP \: \text{to} \: LCP} \end{bmatrix}]

	
static get_refl_trans_multi(structures_list, entry, exit, circ=False, method='SM')

	This function calculates reflectance of a system made of a list of Structures in the linear or circular
polarisation basis, with the method chosen by the user.

	Parameters

	
	structures_list (list) – list of multiple Structures that constitute the stack. Their respective entry
and exit HalfSpaces will be ignored.

	entry – instance of HalfSpace that constitutes the stack’s entry semi-infinite medium

	exit – instance of HalfSpace that constitutes the stack’s exit semi-infinite medium

	circ (bool) – False to express results in the linear polarisation basis, True to express results in
the circular polarisation basis

	method (string) – the matrix method to use for the calculation:

	"SM" for the scattering matrix method

	"TM" for the transfer matrix method with the eigenvectors and eigenvalues

	"EM" for the transfer matrix method with the direct exponential of Berreman’s matrix

	Returns

	reflectance: 2x2 Numpy array whose values correspond to:

	in the linear polarisation basis (circ=False):

[image: \begin{bmatrix} R_{p \: \text{to} \: p} & R_{s \: \text{to} \: p} \\ R_{p \: \text{to} \: s} & R_{s \: \text{to} \: s} \end{bmatrix}]

	in the circular polarisation basis (circ=False):

[image: \begin{bmatrix} R_{RCP \: \text{to} \: RCP} & R_{LCP \: \text{to} \: RCP} \\ R_{RCP \: \text{to} \: LCP} & R_{LCP \: \text{to} \: LCP} \end{bmatrix}]

	Returns

	transmittance: 2x2 Numpy array whose values correspond to:

	in the linear polarisation basis (circ=False):

[image: \begin{bmatrix} T_{p \: \text{to} \: p} & T_{s \: \text{to} \: p} \\ T_{p \: \text{to} \: s} & T_{s \: \text{to} \: s} \end{bmatrix}]

	in the circular polarisation basis (circ=False):

[image: \begin{bmatrix} T_{RCP \: \text{to} \: RCP} & T_{LCP \: \text{to} \: RCP} \\ T_{RCP \: \text{to} \: LCP} & T_{LCP \: \text{to} \: LCP} \end{bmatrix}]

	
is_layer_compatible(layer)

	This function checks if the layer layer is compatible with the structure: the [image: x]-component of the
normalised wavevector and its normalisation factor [image: k_0] must stay the same throughout the stack.

	Parameters

	layer – a Layer

	Return bool

	True if the layer is compatible with the structure, False otherwise

	
remove_layer(layer_index)

	This function removes from the Structure the Layer at the index layer_index.

	Parameters

	layer_index (int) – index of the Layer to remove

	
replace_layer(layer_index, new_layer)

	This function replaces the Layer at the index layer_index by the Layer new_layer provided it is
compatible with the structure (see function Structure.is_layer_compatible(layer)).

	Parameters

	
	layer_index (int) – index of the Layer to replace

	new_layer – Layer to add

	
class pyllama.Wave(epsilon, Kx, Ex, Ey, Hx, Hy)

	This class represents a partial wave in a layer of the multilayer stack with:

	its electric field

	its magnetic field

	its Poynting vector

	the [image: x]- (tangential) component of its normalised wavevector

	Parameters

	
	epsilon (ndarray) – permittivity tensor: a 3x3 Numpy array

	Kx (float) – [image: x]-component of the normalised wavevector

	Ex (float) – [image: x]-component of the electric field

	Ey (float) – [image: y]-component of the electric field

	Hx (float) – [image: x]-component of the magnetic field

	Hy (float) – [image: y]-component of the magnetic field

	
static calc_Ez_Hz(epsilon, Kx, Ex, Ey, Hy)

	This function calculates the [image: z]-components of the electric and magnetic fields of the Wave

	
calc_cp_elec()

	This function calculates the parameter Cp, used to sort a pair of partial waves between s and p
polarisations.
:return: Cp = |Ex| ** 2 / (|Ex|**2 + |Ey|**2)

	
calc_cp_poynting()

	This function calculates the parameter Cp, used to sort a pair of partial waves between s-like and p-like
polarisations.
:return: Cp = |Sx| ** 2 / (|Sx|**2 + |Sy|**2)

	
calc_poynting()

	This function calculates the Poynting vector of the Wave

	
static matrix_to_waves(mat, epsilon, Kx)

	Given a layer’s 4 eigenvectors in a 4x4 Numpy array where each column corresponds to a column vector
[image: \psi = [E_x, H_y, E_y, -H_x]], this function returns a list of the 4 corresponding Waves, which are
easier to manipulate when electric fields, magnetic fields and Poynting vectors need to be accessed.

	Parameters

	
	mat (ndarray) – 4x4 Numpy array of 4 eigenvectors [image: \psi_0], [image: \psi_1], [image: \psi_2] and [image: \psi_3]
whose values correspond to:

[image: \begin{bmatrix} E_{x, \: 0} & E_{x, \: 1} & E_{x, \: 2} & E_{x, \: 3} \\ H_{y, \: 0} & H_{y, \: 1} & H_{y, \: 2} & H_{y, \: 3} \\ E_{y, \: 0} & E_{y, \: 1} & E_{y, \: 2} & E_{y, \: 3} \\ -H_{x, \: 0} & -H_{x, \: 1} & -H_{x, \: 2} & -H_{x, \: 3} \end{bmatrix}]

	epsilon (ndarray) – permittivity tensor: 3x3 Numpy array

	Kx (float) – the [image: x]- (tangential) component of its normalised wavevector

	Returns

	list of 4 corresponding Waves [w_0, w_1, w_2, w_3]

	
static waves_to_matrix(w_list, norm=False)

	Given a layer’s 4 partial waves as Waves objects, this function returns a matrix where the components
[image: E_x], [image: E_y], [image: H_x] and [image: H_y] are arranged so that the matrix can be used as a
transition matrix for the layer. The function extracts a vector [image: \psi = [E_x, H_y, E_y, -H_x]] for each
of the 4 waves and formats them into a matrix where each column is a [image: \psi].

	Parameters

	
	w_list (list) – list of 4 partial waves Waves [w_0, w_1, w_2, w_3]

	norm (bool) – set to True to normalise each [image: \psi] to a modulus of 1, otherwive set to False. Must
be set to False for the partial waves of the HalfSpaces.

	Returns

	4x4 Numpy array of 4 eigenvectors [image: \psi_0], [image: \psi_1], [image: \psi_2] and [image: \psi_3] whose values correspond to:

[image: \begin{bmatrix} E_{x, \: 0} & E_{x, \: 1} & E_{x, \: 2} & E_{x, \: 3} \\ H_{y, \: 0} & H_{y, \: 1} & H_{y, \: 2} & H_{y, \: 3} \\ E_{y, \: 0} & E_{y, \: 1} & E_{y, \: 2} & E_{y, \: 3} \\ -H_{x, \: 0} & -H_{x, \: 1} & -H_{x, \: 2} & -H_{x, \: 3} \end{bmatrix}]

	
pyllama.rot_mat(axis=array([0, 0, 1]), theta_rad=0)

	This function builds a rotation matrix for a given angle around a given axis accordung to
https://en.wikipedia.org/wiki/Rotation_matrix.

	Parameters

	
	axis (ndarray) – rotation axis: a one-dimensional Numpy array of length 3 (or the string 'x', 'y' or 'z')

	theta_rad (float) – rotation angle (in radians) around the rotation axis axis

	Returns

	a 3x3 Numpy array rotation matrix

Indices and tables

	Index

	Module Index

	Search Page

Getting started

Overview

PyLlama enables to calculate the reflection and transmission spectra of an arbitrary multilayer stack whose layers are made of dispersive or non-dispersive, absorbing or non absorbing, isotropic or anisotropic materials. The layers are assumed to be perpendicular to the [image: z] axis and homogeneous and infinite in the [image: x] and [image: y] directions. The stack is sandwiched between an entry and an exit semi-infinite isotropic media, such as air.

[image: ../_images/schematic_stack.png]

Fig. 1 Schematic of the axes and the multilayer stack between entry and exit semi-infinite media.

We use two different matrix method approaches to calculate the reflectance and transmittance of a multilayer stack: the transfer matrix method and the scattering method. Both methods are based on the same optical principles: continuity of the electric and magnetic fields at the interfaces between the layers (referred to as “transition”) and phase build-up inside the layers (referred to as “propagation”). We describe the underlying theory in our paper that the user of the code is invited to read.

Code organisation

PyLlama is a code that can be used as a package (the user imports the code and uses the implemented classes and methods) and can be customised (the user writes their own routines to model specific multilayer stacks in form of children classes).

The code in pyllama.py is organised as follows:

	the three classes Wave, Layer (and its child HalfSpace) and Structure implement the optical calculations described in our paper. In principle, the user should not modify these classes.

	the class Model and its children contain routines that construct Structure instances through useful routines. The user should use these classes in scripts (some scripts are available on StackMat’s GitHub repository) and may also add their own children classes to the code.

	the class Spectrum provides an extra level of automation to calculate full spectra in one command and to export results in Python-compatible (Pickles) or MATLAB format. The user should use this class in scripts and may also interface it with their custom child classes of Model.

How to install

PyLlama requires Python 3 to run. It has been tested with Python 3.6 from Python 3.8. It also requires the following packages (other versions may work too):

	Numpy version 1.18 to 1.19

	Sympy version 1.4 to 1.6

	Scypy version 1.2 to 1.5

	Matplotlib version 3.2

The file pyllama.py must be downloaded and placed in a location that is in Python’s path. It contains the classes and function required to build multilayer stacks and calculate their reflectance. In each script, PyLlama must be imported with:

import pyllama

Custom libraries may be used in interaction with the class Model to construct Structures. The user should ensure that they have installed all the required libraries.

Library for cholesterics

The file cholesteric.py is required to work with the class CholestericModel, and the file geometry.py contains tools to represent cholesterics in 3D plots. If the used wishes to use the class CholestericModel, they need to import the Cholesteric class with:

import cholesteric

If the user does not wish to use the class CholestericModel, they do not need to download cholesteric.py nor geometry.py.

Creating a multilayer stack

A multilayer stack and by extension a layer is defined for given incident conditions, which are:

	the wavelength of light [image: \lambda], in nanometers

	the angle of incidence upon the stack [image: \theta_{in}] defined in the entry isotropic semi-infinite medium in the [image: (xz)] plane, in degrees or in radians

	the associated wavevector [image: k = (k_x, k_y, k_z) = k_0 (K_x, K_y, K_z)]:

	[image: k_0] is the normalised wavevector ([image: k_0 = 2 \pi / \lambda])

	[image: K_x] is the [image: x]-component of the normalised wavevector that stays constant throughout the stack ([image: K_x = n_{entry} \sin(\theta_{in})] where [image: n_{entry}] is the refractive index of the entry isotropic half-space)

	[image: K_y] is its [image: y]-component (that equals to 0 by construction)

	[image: K_z] is its [image: z]-component ([image: K_z = n_{entry} \cos(\theta_{in})] in the entry semi-infinite isotropic medium)

There are three ways of creating a multilayer stack with PyLlama:

[image: ../_images/structure_model_spectrum.png]

	creating a multilayer stack from scratch with the classes Structure and Layer, and working directly with classes that handle the optical calculations

	creating multilayer stacks with the abstract class Model and its children, and writing one’s own child class when a different kind of stack is needed

	using the class Spectrum that provides a higher level of automation to automatically calculate reflection and transmission across a range of wavelengths

This section explains how to create a multilayer stack and the section Calculating the reflection and transmission spectra of a stack explains how to calculate their reflectance.

From scratch: the technical way

A multilayer stack consists in a series of layers sandwiched between an entry and an exit semi-infinite isotropic media. A layer is represented by the class Layer and the semi-infinite isotropic media are represented by the class HalfSpace.

The entry and exit semi-infinite isotropic media are instances of the class HalfSpace and are created with:

k0 = 2 * numpy.pi / wl_nm
Kx = n_entry * numpy.sin(theta_in_rad)
Kz_entry = n_entry * numpy.cos(theta_in_rad)
theta_out_rad = numpy.arcsin((n_entry / n_exit) * numpy.sin(self.theta_in_rad))
Kz_exit = n_exit * numpy.cos(theta_out_rad)
epsilon_entry = numpy.array([[n_entry ** 2, 0, 0],
 [0, n_entry ** 2, 0],
 [0, 0, n_entry ** 2]])
epsilon_exit = numpy.array([[n_exit ** 2, 0, 0],
 [0, n_exit ** 2, 0],
 [0, 0, n_exit ** 2]])
entry = HalfSpace(epsilon_entry, Kx, Kz_entry, k0)
exit = HalfSpace(epsilon_exit, Kx, Kz_exit, k0)

where:

	n_entry is the refractive index of the entry isotropic medium

	n_exit is the refractive index of the exit isotropic medium

	theta_in_rad is the angle of incidence in the entry isotropic medium in radians

	wl_nm is the wavelength of light, in nanometers

	k0 is the wavevector magnitude

	Kx is the [image: x]-component of the normalised wavevector that stays constant through the stack

	Kz_entry and Kz_exit are the [image: z]-components of the normalised wavevector in the entry and exit isotropic half-spaces

	epsilon_entry and epsilon_exit are the permittivity tensors of the entry and exit isotropic half-spaces

A multilayer stack whose layers are embedded between the semi-infinite isotropic media entry and exit is then created with:

Ky = 0
Kz = n_entry * numpy.cos(theta_in_rad)
my_stack_structure = Structure(entry, exit, Kx, Ky, Kz_entry, Kz_exit, k0)

where:

	Ky is the [image: y]-component of the normalised wavevector that is equal to 0 throughout the stack

At this point, my_stack_structure represents two semi-infinite isotropic half-space that sandwich no layer. Layers are instances of the class Layer and are created with:

my_layer = Layer(epsilon, thickness_nm, Kx, k0)

where:

	k0 is the normalised wavevector

	Kx is the [image: x]-component of the normalised wavevector

	epsilon is the permittivity tensor (3x3 Numpy array) of the layer, which can represent a material that is isotropic or anisotropic, absorbing or non-absorbing

	thickness_nm is the thickness of the layer in nanometers

The [image: z]-component of the normalised wavevector changes inside the stack and is not defined in the Layer: the partial waves will be calculated instead.

Then, the layer can be added to the stack with:

my_stack_structure.add_layer(my_layer)

The content of a stack can then be accessed with:

my_stack_structure.entry # access the entry HalfSpace
my_stack_structure.exit # access the exit HalfSpace
my_stack_structure.layers # access the list of Layers in the stack

The functions add_layers(), remove_layer() and replace_layer() also enable the user to construct the stacks that they want.

Note

[image: k_0] and [image: K_x] stay constant throughout the stack and checks are carried out in the function Structure.add_layer() to ensure that the user only adds Layers that are compatible with the stack. The user should not add Layers with my_stack.layers.append(my_layer) as this may lead to impossible situations.

Lastly, the periodicity of the stack can be changed with:

my_stack_structure.N_periods = number_of_periods

The Layers in the list my_stack.layers represent one periodic pattern that is repeated number_of_periods times in the stack. A multilayer stack made of N repetitions of a periodic unit consisting in layer_a with a permittivity eps_a and a thickness thick_a (in nanometers) and layer_b with a permittivity eps_b and a thickness thick_b (in nanometers) is defined with:

my_stack_structure = Structure(entry, exit, Kx, Ky, Kz_entry, Kz_exit, k0)
layer_a = Layer(eps_a, thick_a, Kx, k0)
layer_b = Layer(eps_b, thick_b, Kx, k0)
my_stack_structure.add_layers([layer_a, layer_b])
my_stack_structure.N_per = N

The leftmost Layer in the list is located after the entry half-space and the rightmost Layer in the list is located before the exit half-space. The periodic pattern can include an arbitrary number of layers and we used two layers as an example.

With the Model class: the flexible way

Creating Layers from scratch to build up a multilayer stack can become constraining. Instead, pre-defined routines (Models) allow the user to create particular multilayer stacks such as single slabs, periodic Bragg stacks, isotropic stacks where each layer has the same optical thickness for a given wavelength, and cholesteric stacks more easily.

The class Model is a general class that gives a blueprint for all its specific children classes: SlabModel, StackModel, StackOpticalThicknessModel, CholestericModel, etc. “Giving the blueprint” means that parameters and functions that are common to all model classes are defined in the class Model, and then its children classes inherit them, in addition to having their own specific parameters and functions. The user should directly use the children classes.

Note

Classes that give the blueprint for their children classes are usually called “abstract classes” and cannot be instanciated but it is here possible to instanciate Model: it creates a stack with no layer.

A multilayer stack made of N repetitions of a periodic unit consisting in a first layer with a permittivity eps_a and a thickness thick_a (in nanometers) and a second layer with a permittivity eps_b and a thickness thick_b (in nanometers) can be represented with StackModel and is defined with:

my_stack_model = StackModel([eps_a, eps_b], [thick_a, thick_b], n_entry, n_exit, wl_nm, theta_in_rad, N)

where the following parameters are required by all Models:

	n_entry is the refractive index of the entry isotropic medium

	n_exit is the refractive index of the exit isotropic medium

	theta_in_rad is the angle of incidence in the entry isotropic medium in radians

	wl_nm is the wavelength of light, in nanometers

while the lists [eps_a, eps_b] and [thick_a, thick_b] are required specifically by StackModel.

The documentation of the classes SlabModel, StackOpticalThicknessModel and CholestericModel provide information on which parameters are required to create stacks with these specific classes.

With the Spectrum class: the automated way

The Spectrum class provides a further level of automation for the user. It is meant for experimentalists who measure spectra from multilayered samples and want to quickly model their sample. The class Spectrum enables to get a full spectrum in one go and to export it for MATLAB or Python processing. The creation of a Spectrum is not more convenient than the creation of a Model but they will differ in their utilisation.

A Spectrum can be created the following way:

my_stack_spec = Spectrum(wl_nm_list, model_type, model_parameters)

where:

	wl_nm_list is a list of wavelengths

	model_type is a string that describes the type of model to use

	model_parameters is a dictionary that contains all parameters needed for the model

For example, to create a Spectrum in the visible for the periodic multilayer stack described in the previous examples, the input parameters are:

wl_nm_list = range(400, 800)
model_type = "StackModel"
model_parameters = {"eps_list": [eps_a, eps_b],
 "thickness_nm_list": [thick_a, thick_b],
 "n_entry": n_entry,
 "n_exit": n_exit,
 "theta_in_rad": theta_in_rad,
 "N_per": N}

The documentation of the classes SlabModel, StackOpticalThicknessModel and CholestericModel provide information on which parameters are required to create the appropriate dictionaries for their associated Spectra.

Note

Models may have default parameters (for example, when the user does not specify a number of periods for StackModel, the value is set to 1 automatically), which is specified in their respective documentation. This is maintained in their associated Spectra: the dictionary of parameters created by the user is merged with a dictionary of default parameters.

Calculating the reflection and transmission spectra of a stack

The section Creating a multilayer stack explains how to create the multilayer stack with three methods, which all enable to calculate the reflection and transmission spectra of the stack with different level of additional details:

	creating a multilayer stack from scratch with the classes Structure Layer, and working directly with classes that handle the optical calculations. This method gives direct access to the partial waves inside each layer of the multilayer stack, to the transfer and scattering matrices, to the multilayer stack’s reflection and transmission coefficients and to the multilayer stack’s reflectance and transmittance for one wavelength.

	creating multilayer stacks with the abstract class Model and its children, and writing one’s own child class when a different kind of stack is needed. This method gives direct access to the multilayer stack’s reflectance and transmittance for one wavelength. Additionally, the layer’s partial waves, the transfer and scattering matrices and the reflection and transmission coefficients can also be obtained since the Model creates a Structure.

	using the class Spectrum that provides a higher level of automation. This method gives direct access to the multilayer stack’s reflectance and transmittance for a range of wavelength.

This section explains how to get the reflection spectrum of a multilayer stack which has been created through one of there three methods, following the tutorials Creating a multilayer stack.

From scratch: the technical way

When the user follows the method “from scratch” with the class Structure to create a multilayer stack my_stack_structure, they interact directly with the classes that handle the optics calculation. The Structure that represents the multilayer stack contains a list of Layers and the entry and exit HalfSpaces (which are children of Layer). Layers and HalfSpaces implement the calculation of Berreman’s matrix and of the layer’s eigenvalues and eigenvectors, used to calculate the layer’s partial waves. These are calculated immediately upon the creation of the Layer or HalfSpace and can be accessed through:

my_stack_structure.layers[k].D # layer’s Berreman’s matrix
my_stack_structure.layers[k].eigenvalues # layer’s eigenvalues
my_stack_structure.layers[k].eigenvectors # layer’s eigenvectors
my_stack_structure.layers[k].partial_waves # layer’s partial waves

where k is the index of the Layer in the Structure my_stack_structure.

A Structure therefore automatically contains a series of four partial waves per layer, which are used to construct its transfer matrix or its scattering matrix (for the wavelength that was used to create the Structure). The transfer and scattering matrices can be calculated the following way:

my_stack_structure.build_transfer_matrix() # transfer matrix
my_stack_structure.build_scattering_matrix() # scattering matrix

Reflection and transmission coefficients in the linear polarisation basis (for the wavelength that was used to create the Structure) can be calculated with:

J_refl_lin, J_trans_lin = my_stack_structure.get_fresnel()

and converted to the circular polarisation basis with:

J_refl_circ, J_trans_circ = Structure.fresnel_to_fresnel_circ(J_lin)

The results are two [image: 2\times2] Numpy arrays of reflection coefficients ([image: r]) and transmission coefficients ([image: t]) organised the following way:

	in the linear polarisation basis:

[image: r_{lin} = \begin{bmatrix} r_{p \: \text{to} \: p} & r_{s \: \text{to} \: p} \\ r_{p \: \text{to} \: s} & r_{s \: \text{to} \: s} \end{bmatrix} t_{lin} = \begin{bmatrix} t_{p \: \text{to} \: p} & t_{s \: \text{to} \: p} \\ t_{p \: \text{to} \: s} & t_{s \: \text{to} \: s} \end{bmatrix}]

	in the circular polarisation basis:

[image: r_{circ} = \begin{bmatrix} r_{RCP \: \text{to} \: RCP} & r_{LCP \: \text{to} \: RCP} \\ r_{RCP \: \text{to} \: LCP} & r_{LCP \: \text{to} \: LCP} \end{bmatrix} t_{circ} = \begin{bmatrix} t_{RCP \: \text{to} \: RCP} & t_{LCP \: \text{to} \: RCP} \\ t_{RCP \: \text{to} \: LCP} & t_{LCP \: \text{to} \: LCP} \end{bmatrix}]

For example, the user can access the reflection coefficient for incoming s-polarised light reflected as p-polarised light of the multilayer stack represented by the Structure my_stack_structure with:

J_lin, _ = my_stack_structure.get_fresnel()
J_lin[0, 1]

The reflectance and transmittance of the multilayer stack (for the wavelength that was used to create the Structure) can be obtained with:

my_stack_structure.get_refl_trans(circ=<False|True>, method=<"SM"|"TM">)

where method defines the matrix method used ("SM" (default) for the scattering matrix method and "TM" for the transfer matrix method) and circ=False (default) calculates the reflectance and transmittance in the linear polarisation basis and circ=True calculates them in the circular polarisation basis.

The results are two [image: 2\times2] Numpy arrays of reflectances ([image: R]) organised the following way:

	in the linear polarisation basis:

[image: R_{lin} = \begin{bmatrix} R_{p \: \text{to} \: p} & R_{s \: \text{to} \: p} \\ R_{p \: \text{to} \: s} & R_{s \: \text{to} \: s} \end{bmatrix} T_{lin} = \begin{bmatrix} T_{p \: \text{to} \: p} & T_{s \: \text{to} \: p} \\ T_{p \: \text{to} \: s} & T_{s \: \text{to} \: s} \end{bmatrix}]

	in the circular polarisation basis:

[image: R_{circ} = \begin{bmatrix} R_{RCP \: \text{to} \: RCP} & R_{LCP \: \text{to} \: RCP} \\ R_{RCP \: \text{to} \: LCP} & R_{LCP \: \text{to} \: LCP} \end{bmatrix} T_{circ} = \begin{bmatrix} T_{RCP \: \text{to} \: RCP} & T_{LCP \: \text{to} \: RCP} \\ T_{RCP \: \text{to} \: LCP} & T_{LCP \: \text{to} \: LCP} \end{bmatrix}]

To calculate the reflection and transmission spectra of the stack over a range of wavelengths, the user must create a new Structure for each wavelength and recalculate the reflectance, for example with:

Creation of an empty variable
reflection_s_to_p = []

Creation of the wavelengths
wl_nm_list = range(400, 800)

Calculation of the reflectance for each wavelength
for wl_nm in wl_nm_list:
 # Calculation of the wavevector
 k0 = 2 * numpy.pi / wl_nm
 Kx = n_entry * numpy.sin(theta_in_rad)
 Ky = 0
 Kz_entry = n_entry * numpy.cos(theta_in_rad)
 theta_out_rad = numpy.arcsin((n_entry / n_exit) * numpy.sin(self.theta_in_rad))
 Kz_exit = n_exit * numpy.cos(theta_out_rad)

 # Creation of the entry and exit half-spaces and of the two layers
 entry = HalfSpace(epsilon_entry, Kx, Kz_entry, k0)
 exit = HalfSpace(epsilon_exit, Kx, Kz_exit, k0)
 layer_a = Layer(eps_a, thick_a, Kx, k0)
 layer_b = Layer(eps_b, thick_b, Kx, k0)

 # Creation of the periodic stack
 my_stack_structure = Structure(entry, exit, Kx, Ky, Kz_entry, Kz_exit, k0)
 my_stack_structure.add_layers([layer_a, layer_b])
 my_stack_structure.N_periods = N

 # Calculation of the reflectance and storage
 J_refl_lin, _ = my_stack_structure.get_refl_trans()
 reflection_s_to_p.append(J_refl_lin[0, 1])

Plotting
matplotlib.pyplot.plot(wl_nm_list, reflection_s_to_p)

where:

	eps_a and eps_b are the permittivity tensors (3x3 Numpy array) of the layer, which can represent a material that is isotropic or anisotropic, absorbing or non-absorbing

	thick_a and thick_b are the thicknesses of the two layers of the periodic pattern, in nanometers

	N is the number of periods

	`` theta_in_rad`` is the angle of incidence upon the stack, in radians

	eps_entry and eps_exit are the permittivities of the two isotropic half-spaces; they can be defined differently for each wavelength if the materials are dispersive

With the Model class: the flexible way

When the user creates a multilayer stack my_stack_model through one of the Model children classes, the reflectance and transmittance of the multilayer stack (for the wavelength that was used to create the Structure) can be obtained with:

my_stack_model.get_refl_trans(circ=<False|True>, method=<"SM"|"TM">)

where method defines the matrix method used ("SM" (default) for the scattering matrix method and "TM" for the transfer matrix method) and circ=False (default) calculates the reflectance and transmittance in the linear polarisation basis and circ=True calculates them in the circular polarisation basis.

The results are two [image: 2\times2] Numpy arrays of reflectances ([image: R]) organised the following way:

	in the linear polarisation basis:

[image: R_{lin} = \begin{bmatrix} R_{p \: \text{to} \: p} & R_{s \: \text{to} \: p} \\ R_{p \: \text{to} \: s} & R_{s \: \text{to} \: s} \end{bmatrix} T_{lin} = \begin{bmatrix} T_{p \: \text{to} \: p} & T_{s \: \text{to} \: p} \\ T_{p \: \text{to} \: s} & T_{s \: \text{to} \: s} \end{bmatrix}]

	in the circular polarisation basis:

[image: R_{circ} = \begin{bmatrix} R_{RCP \: \text{to} \: RCP} & R_{LCP \: \text{to} \: RCP} \\ R_{RCP \: \text{to} \: LCP} & R_{LCP \: \text{to} \: LCP} \end{bmatrix} T_{circ} = \begin{bmatrix} T_{RCP \: \text{to} \: RCP} & T_{LCP \: \text{to} \: RCP} \\ T_{RCP \: \text{to} \: LCP} & T_{LCP \: \text{to} \: LCP} \end{bmatrix}]

Note

Each children class of Model contains a Structure that can be accessed through my_stack_model.structure and the the previous part of this tutorial can be applied to my_stack_model.structure to access the partial waves, the transfer or scattering matrices and the reflection and transmission coefficients.

To calculate the reflection and transmission spectra of the stack over a range of wavelengths, the user must create a new Model for each wavelength and recalculate the reflectance and transmittance, for example with:

Creation of an empty variable
reflection_s_to_p = []

Creation of the wavelengths
wl_nm_list = range(400, 800)

Calculation of the reflectance for each wavelength
for wl_nm in wl_nm_list:
 # Creation of the periodic stack
 my_stack_model = StackModel([eps_a, eps_b],
 [thick_a, thick_b],
 n_entry,
 n_exit,
 wl_nm,
 theta_in_rad,
 N)

 # Calculation of the reflectance and storage
 J_refl_lin, _ = my_stack_model.get_refl_trans()
 reflection_s_to_p.append(J_refl_lin[0, 1])

Plotting
matplotlib.pyplot.plot(wl_nm_list, reflection_s_to_p)

where:

	eps_a and eps_b are the permittivity tensors (3x3 Numpy array) of the layer, which can represent a material that is isotropic or anisotropic, absorbing or non-absorbing

	thick_a and thick_b are the thicknesses of the two layers of the periodic pattern, in nanometers

	N is the number of periods

	`` theta_in_rad`` is the angle of incidence upon the stack, in radians

	n_entry and n_exit are the refractive indices of the two isotropic half-spaces; they can be defined differently for each wavelength if the materials are dispersive

With the Spectrum class: the automated way

When the user creates a multilayer stack my_stack_spec through the Spectrum class, the reflection and transmission spectra of the multilayer stack (for the range of wavelength that was inputted in the Spectrum) can be obtained with:

my_stack_spectrum.calculate_refl_trans(circ=<False|True>, method=<"SM"|"TM">, talk=<False|True>)

where method defines the matrix method used ("SM" (default) for the scattering matrix method and "TM" for the transfer matrix method), circ=False (default) calculates the reflectance and transmittance in the linear polarisation basis and circ=True calculates them in the circular polarisation basis, and talk=True enables to display the calculation progress on the screen (default is False).

The calculated reflection spectra are stored into the dictionary my_stack_spectrum.data and can be accessed with:

	in the linear polarisation basis: my_stack_spectrum.data["R_p_to_p_to_p"], my_stack_spectrum.data["R_s_to_p"], my_stack_spectrum.data["R_p_to_s"], my_stack_spectrum.data["R_s_to_s"]

	in the circular polarisation basis: my_stack_spectrum.data["R_R_to_R"], my_stack_spectrum.data["R_L_to_R"], my_stack_spectrum.data["R_R_to_L"], my_stack_spectrum.data["R_L_to_L"]

and similarly for the transmission spectra:
- in the linear polarisation basis: my_stack_spectrum.data["T_p_to_p"], my_stack_spectrum.data["T_s_to_p"], my_stack_spectrum.data["T_p_to_s"], my_stack_spectrum.data["T_s_to_s"]

	in the circular polarisation basis: my_stack_spectrum.data["T_R_to_R"], my_stack_spectrum.data["T_L_to_R"], my_stack_spectrum.data["T_R_to_L"], my_stack_spectrum.data["T_L_to_L"]

The calculated spectra (everything stored in my_stack_spectrum.data) can then be exported in MATLAB or Python-compatible format with:

my_stack_spectrum.export(path_out, with_param=<True|False>)

where:

	path_out is the name of the file. If it ends with .mat, the export will be in MATLAB-compatible format, and if it ends with .pck, the export will be in Python-compatible format (with Pickles)

	with_param is set to True (default) when the parameters user for the model are exported too and to False when they are not exported

Note

Some Models may take as input parameters objects that are created through the user’s custom-made libraries (for example, CholestericModel requires an instance of a Cholesteric as a parameter). These objects will be stored in the Model’s parameters. MATLAB can import any unknown object in shape of MATLAB’s type struct but Python can only import objects for whose it can load the libraries that created them. In this case, exporting the spectra without the parameters may be useful, but this is not the default option.

The calculation the reflection spectrum of the stack over a range of wavelengths is automatic, for example with:

Creation of the wavelengths
wl_nm_list = range(400, 800)

Parameters for the stack
model_type = "StackModel"
model_parameters = {"eps_list": [eps_a, eps_b],
 "thickness_nm_list": [thick_a, thick_b],
 "n_entry": n_entry,
 "n_exit": n_exit,
 "theta_in_rad": theta_in_rad,
 "N_per": N}

Creation of the periodic stack
my_stack_spec = Spectrum(wl_nm_list, model_type, model_parameters)

Calculation of the reflectance spectrum in one go
my_stack_spec.calculate_refl_trans()

Plotting
matplotlip.pyplot.plot(wl_nm_list, my_stack_spec.data["R_s_to_p"])

Export for MATLAB
 # All polarisation combinations are exported (p to p, s to p, p to p, s to s)
my_stack_spec.export("my_file_name.mat")

where:

	eps_a and eps_b are the permittivity tensors (3x3 Numpy array) of the layer, which can represent a material that is isotropic or anisotropic, absorbing or non-absorbing; if the material is dispersive, a Model different than StackModel must be used that is able to handle a list of permittivities

	thick_a and thick_b are the thicknesses of the two layers of the periodic pattern, in nanometers

	N is the number of periods

	theta_in_rad is the angle of incidence upon the stack, in radians

	n_entry and n_exit are the refractive indices of the two isotropic half-spaces; they can be defined differently for each wavelength if the materials are dispersive

Quick cholesteric tutorial

In this section aimed at users who are not experienced in programming and/or in Python, we explain a code minimal working example to:

	create a cholesteric architecture with a chosen pitch, tilt and handedness

	obtain a 3D representation of the cholesteric architecture

	calculate the reflectance in transmittance in the circular polarisation basis for a chosen angle of incidence

	extract and plot the results in Python

	export the results for further processing in MATLAB

First, the user must import the required packages. We need PyLLama for the optical calculations, Cholesteric to create the cholesteric architecture, NumPy for basic numerical calculation and Matplotlib.PyPlot for plotting. In Python, all packages are imported in lowercaps at the beginning of the code and they are often given a shorter name (ch instead of cholesteric for example).

Import the required packages
import pyllama as ll
import cholesteric as ch
import numpy as np
import matplotlib.pyplot as plt

Then, the user creates their Cholesteric object with ch.Cholesteric:

Cholesteric object
pitch_nm = 500
tilt_rad = 10 * np.pi / 180
chole = ch.Cholesteric(pitch360=pitch_nm,
 tilt_rad=tilt_rad,
 handedness=1)

The user can obtain a 3D representation of the Cholesteric object with the function plot_simple(). The view parameters defines the viewing angle and the type parameters defines how the pseudolayers are represented (here, with arrows). The user should note that the [image: x], [image: y] and [image: z] axes might not have exactly the same scale.

3D representation of the cholesteric object
fig_3D, ax_3D = chole.plot_simple(view="classic", type="arrow")

The user can then define the incident conditions upon the cholesteric and obtain their 3D representation. When the cholesteric is tilted, the [image: z] axis will be shifted to the helical axis for the calculations.

Incident conditions and 3D representation
theta_in_deg = 50
theta_in_rad = theta_in_deg * np.pi / 180
chole.plot_add_optics(fig_3D, ax_3D, theta_in_rad)

The output is displayed on Figure Fig. 2.

[image: ../_images/script_cholesteric_example_3D.png]

Fig. 2 3D representation of chole obtained with the functions plot_simple() and add_optics().

Then, the user can choose the optical parameters such as the average refractive index and the birefringence, and create a Spectrum object:

Optical parameters
n_av = 1.433
biref = 0.04
n_e = n_av + 0.5 * biref
n_o = n_av - 0.5 * biref
n_entry = n_av
n_exit = n_av
N_per = 20
wl_nm_list = np.arange(400, 800)

Creation of the spectrum
spectrum = ll.Spectrum(wl_nm_list,
 "CholestericModel",
 dict(chole=chole,
 n_e=n_e,
 n_o=n_o,
 n_entry=n_entry,
 n_exit=n_exit,
 N_per=N_per,
 theta_in_rad=theta_in_rad))

The calculation of the reflectance and transmittance is done in one go; the parameter circ=True enables to calculate the reflectance and transmittance in the circular polarisation basis, the parameter method="SM" enables to choose the always-accurate scattering matrix method for the calculation and the parameter talk=True allows do display the calculation progress on the screen. The spectrum will take about 30 seconds to be calculated.

Calculation of the reflectance and transmittance
spectrum.calculate_refl_trans(circ=True, method="SM", talk=True)

The results can be plotted:

Plot the spectra
fig = plt.figure()

ax1 = fig.add_subplot(311)
ax1.plot(wl_nm_list, spectrum.data['R_R_to_R'], label="RCP to RCP")
ax1.plot(wl_nm_list, spectrum.data['R_R_to_L'], label="RCP to LCP")
plt.legend(loc=2)
plt.xlim([400, 800])
plt.ylim([0, 1])
plt.xlabel('Wavelength (nm)')
plt.ylabel('Reflectance')
ax1.set_title('Incoming RCP')

ax2 = fig.add_subplot(312)
ax2.plot(wl_nm_list, spectrum.data['R_L_to_R'], label="LCP to RCP")
ax2.plot(wl_nm_list, spectrum.data['R_L_to_L'], label="LCP to LCP")
plt.legend(loc=2)
plt.xlim([400, 800])
plt.ylim([0, 1])
plt.xlabel('Wavelength (nm)')
plt.ylabel('Reflectance')
ax2.set_title('Incoming LCP')

For incoming unpolarised light, the user should not forget to average the incoming RCP and incoming LCP:

ax3 = fig.add_subplot(313)
ax3.plot(wl_nm_list, 0.5 * (spectrum.data['R_R_to_R']
 + spectrum.data['R_R_to_L']
 + spectrum.data['R_L_to_R']
 + spectrum.data['R_L_to_L']),
 label="reflection")
ax3.plot(wl_nm_list, 0.5 * (spectrum.data['T_R_to_R']
 + spectrum.data['T_R_to_L']
 + spectrum.data['T_L_to_R']
 + spectrum.data['T_L_to_L']),
 label="transmission")
plt.legend(loc=2)
plt.xlim([400, 800])
plt.ylim([0, 1])
plt.xlabel('Wavelength (nm)')
plt.ylabel('Intensity')
ax3.set_title('Incoming unpolarised')

The user can make the layout of the plots a bit nicer, before saving and displaying the figure (without plt.show(), the plots will not be shown on the computer screen):

plt.tight_layout()
fig.savefig("script_cholesteric_example.png", dpi=300)
plt.show()

The output is displayed on Figure Fig. 3.

[image: ../_images/script_cholesteric_example_spectra.png]

Fig. 3 Spectra obtained with the Spectrum and CholestericModel.

The results can be exported to MATLAB very simply for further processing. The parameters such as the refractive indices are also exported, as well as all the fields of the cholesteric object (such as the directors of the pseudo-layers). To export with Pickles (for Python further processing), the user should replace the extension .mat by .pck.

Export the spectra to an external file
path_out = "pyllama_cholesteric_spectrum.mat"
spectrum.export(path_out)

Choosing which matrix method to use

Note

The theory that leads to the equations presented in this section is detailed in “PyLlama: a stable and flexible Python toolkit for the electromagnetic modeling of multilayered anisotropic media” (in preparation).

The transfer matrix and the scattering matrix both link the incoming, reflected and transmitted electric fields, but their equations are built differently. The notations are displayed on Figure Fig. 4.

[image: ../_images/schematic_Ep_Es.png]

Fig. 4 Schematic of the electric field direction for [image: p] and [image: s]-polarisations.

The transfer matrix equation is:

[image: \begin{bmatrix} E_p \: \text{transmitted} \\ E_s \: \text{transmitted} \\ 0 \\ 0 \end{bmatrix} = T \begin{bmatrix} E_p \: \text{incident} \\ E_s \: \text{incident} \\ E_p \: \text{reflected} \\ E_s \: \text{reflected} \end{bmatrix}]

and the scattering matrix equation is:

[image: \begin{bmatrix} E_p \: \text{transmitted} \\ E_s \: \text{transmitted} \\ E_p \: \text{reflected} \\ E_s \: \text{reflected} \end{bmatrix} = S \begin{bmatrix} E_p \: \text{incident} \\ E_s \: \text{incident} \\ 0 \\ 0 \end{bmatrix}]

The reflection and transmission coefficients are extracted from either of these matrix equations to obtain:

[image: r_{p \: \text{to} \: p} = \frac{E_p \text{reflected}}{E_p \text{incident}} \quad r_{s \: \text{to} \: p} = \frac{E_p \text{reflected}}{E_s \text{incident}} r_{p \: \text{to} \: s} = \frac{E_s \text{reflected}}{E_p \text{incident}} \quad r_{s \: \text{to} \: s} = \frac{E_s \text{reflected}}{E_s \text{incident}}]

and:

[image: t_{p \: \text{to} \: p} = \frac{E_p \text{transmitted}}{E_p \text{incident}} \quad t_{s \: \text{to} \: p} = \frac{E_p \text{transmitted}}{E_s \text{incident}} t_{p \: \text{to} \: s} = \frac{E_s \text{transmitted}}{E_p \text{incident}} \quad t_{s \: \text{to} \: s} = \frac{E_s \text{transmitted}}{E_s \text{incident}}]

Mathematically, both equations lead to the same result and choosing which one to use has no impact on the reflection and transmission coefficients, but numerically, differences can be observed in the robustness and in the computation time.

As an example, we built two cholesterics with a different birefringence (chole_1 with [image: \Delta n = 0.05] and chole_2 with [image: \Delta n = 0.2]) and a different number of periods (20 for chole_1 and 200 for chole_2), and confronted the transfer and scattering matrix methods. A we can see on Figure Fig. 5, the two matrix methods give the exact same results when the birefringence is low and when the number of periods is low. However, for a higher birefringence and a larger number of periods, the transfer matrix (be it calculated with the eigenvalues and eigenvectors or with the direct exponential of Berreman’s matrix) is numerically unstable.

[image: ../_images/fig_spectra_SM_TM_EM_cropped.png]

Fig. 5 Reflection spectra calculated with the transfer matrix method (TM and EM) and the scattering matrix method (SM) for chole_1 (left) and chole_2 (right).

With the scattering matrix method (SM), the spectra took about 40 seconds to be calculated on a laptop, against 20 seconds for the transfer matrix method with the eigenvalue and eigenvector calculation (TM) and 35 seconds for the transfer matrix method with the direct exponential of Berreman’s matrix (EM).

The SM method always gives accurate results. However, for speed, the user may prefer using the TM transfer matrix method. The user should always check that the results calculated with TM match these calculated with SM in the most critical conditions of the user’s range of parameters (higher birefringence, larger number of periods, larger angle of incidence).

Creating a custom Model class

The Model class and its children enable the user to construct Structures automatically from given parameters. The class Model can be viewed as an abstract class that defines parameters and methods common to all its children; however, it is possible to create an instance of Model: it will have an empty Structure. In the tutorial, we explain how the class Model is constructed and how the user can write their own child class.

Anatomy of the Model class

The parameters of the Model class are:

	n_entry: the refractive index of the stack’s entry isotropic semi-infinite medium

	n_exit: the refractive index of the stack’s exit isotropic semi-infinite medium

	wl_nm: the wavelength in nanometers

	theta_in_rad: the angle of incidence in radians

and they are used to initialise the Model with the following fields:

def __init__(self, n_entry, n_exit, wl_nm, theta_in_rad):
 self.n_entry = n_entry
 self.n_exit = n_exit
 self.wl = wl_nm
 self.theta_in = theta_in_rad
 theta_out = np.arcsin((n_entry / n_exit) * np.sin(self.theta_in))
 self.k0 = 2 * np.pi / self.wl
 self.Kx = self.n_entry * np.sin(self.theta_in) # kx = Kx * k0
 self.Ky = 0 # ky = Ky * k0
 self.Kz_entry = self.n_entry * np.cos(self.theta_in) # kz_entry = Kz_entry * k0
 self.Kz_exit = self.n_exit * np.cos(theta_out) # kz_entry = Kz_entry * k0
 self.structure = self._build_structure_total()

The Model’s structure is an instance of Structure created with the function _build_structure_total():

def _build_structure_total(self):
 entry_space, exit_space = self._build_entry_exit()
 structure = self._build_structure(entry_space, exit_space)
 return structure

This function calls two sub-functions: _build_entry_exit() that creates the entry and exit isotropic HalfSpaces, and _build_structure() that creates a Structure containing the appropriate Layers to represent the multilayer stack.

The function _build_entry_exit() simply creates the entry and exit HalfSpaces:

def _build_entry_exit(self):
 epsilon_entry = np.array([[self.n_entry ** 2, 0, 0],
 [0, self.n_entry ** 2, 0],
 [0, 0, self.n_entry ** 2]])
 epsilon_exit = np.array([[self.n_exit ** 2, 0, 0],
 [0, self.n_exit ** 2, 0],
 [0, 0, self.n_exit ** 2]])
 entry_space = HalfSpace(epsilon_entry, self.Kx, self.Kz_entry, self.k0, category="isotropic")
 exit_space = HalfSpace(epsilon_exit, self.Kx, self.Kz_exit, self.k0, category="isotropic")
 return entry_space, exit_space

and the function _build_structure() creates the Structure representing the multilayer stack, without any Layer when the class Model is used:

def _build_structure(self, entry_space, exit_space):
 warnings.warn("The build_function method of the Model class is used.")
 return Structure(entry=entry_space, exit=exit_space, Kx=self.Kx, Ky=self.Ky, Kz_entry=self.Kz_entry, Kz_exit=self.Kz_exit, k0=self.k0, N_periods=1)

When the Structure has been built, its reflectance can be calculated with get_refl_trans():

def get_refl_trans(self, circ=False, method="SM"):
 return self.structure.get_refl_trans(circ=circ, method=method)

Creating a custom child

The core functions in the Model class are the following:

	__init__ to create the Model instance

	_build_entry_exit() to create the entry and exit HalfSpaces

	_build_structure() to create the Structure with the Layers

	_build_structure_total() that calls _build_entry_exit() and _build_structure()

	get_refl_trans() that calculates the reflectance of the multilayer stack represented by the Model

This constitutes a blueprint for the children classes of Model, such as StackModel or CholestericModel. A child class of Model contains functions that can be divided into three categories:

	functions that are implemented in Model and that the child class inherits

	functions that are implemented in Model and that are overwritten in the child class

	functions that are specific to the child class

Typically, the user’s new child class will be written as follows:

class ChildModel(Model):
 def __init__(self, parameter1, parameter2, parameter3, n_entry, n_exit, wl_nm, theta_in_rad):
 # Initialisation with parameters that are specific to ChildModel:
 self.param1 = parameter1
 self.param2 = parameter2
 self.param3 = parameter3
 # Initialisation with the inherited method:
 # (ChildModel's parameters might be used to recalculate the parent's parameters)
 super().__init__(n_entry, n_exit, wl_nm, theta_in_rad)

 def _build_structure(self, entry_space, exit_space):
 # Create an empty structure between isotropic half spaces
 my_structure = Structure(entry_space, exit_space, self.Kx, self.Ky, self.Kz_entry, self.Kz_exit, self.k0, N_per=1)

 # A custom routine with self.param1, self.param2, self.param3 that creates Layers and adds them to the Structure
 my_structure.add_layers(my_list_of_layers)

 # Return the Structure that contains the custom-made Layers
 return my_structure

When using super().__init__ in the child class (ChildModel), it will call the _build_structure_total() method in the parent class (Model), which will then call both the _build_structure() method of the child (which overrides the parent one), and _build_entry_exit() of the parent (since it is not overridden by a child version). CholestericModel, SlabModel, StackModel and StackOpticalThicknessModel are built this way. They also inherit get_refl_trans() from Model.

The user simply needs to add their own ChildModel to the code by using the sample used as an example above with their own chosen parameters, and when calling ChildModel.get_refl_trans(), they will immedietaly benefit from the optical calculations that have been implemented.

Of course, when the user writes a new child class, they may overwrite as many functions as they want, and they may add as many specific functions as they want. For example, MixedModel overwrites most functions from Model.

Model also contains the function copy_as_stack() that creates a StackModel containing the same layers as a given Model. The user will need to overwrite this function too.

Pairing the custom child with Spectrum

The Spectrum class implements the modelling of a multilayer stack over a range of wavelength and provide tools for calculating reflection spectra with the choice of the polarisation basis and for exporting the data. Pairing the user’s new child class of Model with Spectrum enables the user to have access to such functionalities.

A Spectrum is defined by the following function:

def __init__(self, wl_nm_list, model_type, model_parameters):
 self.wl_list = wl_nm_list # list of wavelengths in nm
 self.mo_type = model_type # name of model
 self.mo_param = model_parameters # dictionary with model parameters
 self.data = {} # empty dictionary for storage

When the user calls the function calculate_refl(), the name of the Model (mo_type) is checked and this triggers the creation of the appropriate Model, from the parameters in the dictionary mo_param. The user needs to add their own elif case to identify the ChildModel and handle its parameters correctly. For example, for the following ChildModel’s input parameters:

def __init__(self, parameter1, parameter2, parameter3, n_entry, n_exit, wl_nm, theta_in_rad, default4=value4, default5=value5)

the new elif case to add to Spectrum’s calculate_refl() corresponds to:

elif self.mo_type == "ChildModel":
 default_param = dict("default4"=value4, "default5"=value5)
 self.mo_param = {**default_param, **self.mo_param} # self.mo_param is added to default_param and overwrites the default parameters
 model = ChildModel(self.mo_param["parameter1"],
 self.mo_param["parameter2"],
 self.mo_param["parameter3"],
 self.mo_param["n_entry"],
 self.mo_param["n_exit"],
 wl,
 self.mo_param["theta_in_rad"],
 self.mo_param["default4"],
 self.mo_param["default5"])

This says that when Spectrum is instanciated with the parameter mo_type equal to the string ChildModel, an instance of ChildModel will be created with the parameters chosen by the user.

The keys "parameter1", "parameter2", etc, can have an arbitrary name, but for clarity it is easier if the keys match the parameter’s name in the __init__ function.

Once this is done, the user can create a Spectrum with ChildModel as usual, as well as calculate the reflectance and export the spectra:

Creation of the wavelengths
wl_nm_list = range(400, 800)

Parameters for the ChildModel
There are two default parameters: default4 and default5
The user sets a value for default5: this overwrites the default value
The user doesn't set a value for default4: the default value will be used
model_type = "ChildModel"
model_parameters = {"parameter1": my_value_1,
 "parameter2": my_value_2,
 "parameter3": my_value_3,
 "default5": my_value_5,
 "n_entry": n_entry,
 "n_exit": n_exit,
 "theta_in_rad": theta_in_rad}

Creation of the periodic stack
my_spec = Spectrum(wl_nm_list, model_type, model_parameters)

The functions of the Spectrum class automatically work
my_stack_spec.calculate_refl_trans()
matplotlip.pyplot.plot(wl_nm_list, my_stack_spec.data["R_ps"])
my_stack_spec.export("my_file_name.mat")

Acknowledgements

Authors

PyLlama has originally been developed by Mélanie M. Bay, under the supervision of Silvia Vignolini and Kevin Vynck, as part of her PhD project “The Interplay of between order and disorder in cholesteric hydroxypropyl cellulose films” (University of Cambridge, 2021).

Referencing

Please cite the following article in any work making use of PyLlama:
M. M. Bay, S. Vignolini, and K. Vynck, “PyLlama: A stable and versatile Python toolkit for the electromagnetic modelling of multilayered anisotropic media”, Comput. Phys. Commun. 273, 108256 (2022).
DOI 10.1016/j.cpc.2021.108256 [https://doi.org/10.1016/j.cpc.2021.108256]

Financial support

This work was supported by ERC grant ERC-2014-STG H2020 639088 and Philip Leverhulme Prize (PLP-2019-271) for S.V. and M.M.B.

 Python Module Index

 p

 		 	

 		
 p	

 	
 	
 pyllama	

Index

 A
 | B
 | C
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | P
 | R
 | S
 | W

A

 	
 	add_layer() (pyllama.StackModel method)

 	(pyllama.Structure method)

 	add_layers() (pyllama.StackModel method)

 	(pyllama.Structure method)

 	
 	add_result() (pyllama.Spectrum method)

 	are_structures_compatible() (pyllama.Structure static method)

B

 	
 	build_exponential_matrix() (pyllama.Structure method)

 	build_exponential_matrix_multi() (pyllama.Structure static method)

 	build_P_Q() (pyllama.Layer method)

 	build_scattering_matrix() (pyllama.Structure method)

 	
 	build_scattering_matrix_multi() (pyllama.Structure static method)

 	build_scattering_matrix_to_next() (pyllama.Structure static method)

 	build_transfer_matrix() (pyllama.Structure method)

 	build_transfer_matrix_multi() (pyllama.Structure static method)

C

 	
 	calc_cp_elec() (pyllama.Wave method)

 	calc_cp_poynting() (pyllama.Wave method)

 	calc_Ez_Hz() (pyllama.Wave static method)

 	calc_poynting() (pyllama.Wave method)

 	calculate_refl_trans() (pyllama.Spectrum method)

 	
 	change_N_per() (pyllama.StackModel method)

 	CholestericModel (class in pyllama)

 	combine_scattering_matrices() (pyllama.Structure static method)

 	copy_as_stack() (pyllama.MixedModel method)

 	(pyllama.Model method)

E

 	
 	export() (pyllama.Spectrum method)

 	
 	extract_stack() (pyllama.StackModel method)

F

 	
 	fresnel_to_fresnel_circ() (pyllama.Structure static method)

G

 	
 	get_fresnel() (pyllama.Structure method)

 	get_fresnel_multi() (pyllama.Structure static method)

 	get_refl_trans() (pyllama.MixedModel method)

 	(pyllama.Model method)

 	(pyllama.Structure method)

 	
 	get_refl_trans_multi() (pyllama.Structure static method)

H

 	
 	HalfSpace (class in pyllama)

I

 	
 	is_layer_compatible() (pyllama.Structure method)

L

 	
 	Layer (class in pyllama)

M

 	
 	matrix_to_waves() (pyllama.Wave static method)

 	
 	MixedModel (class in pyllama)

 	Model (class in pyllama)

P

 	
 	pyllama (module)

R

 	
 	remove_layer() (pyllama.Structure method)

 	rename_result() (pyllama.Spectrum method)

 	replace_layer() (pyllama.Structure method)

 	
 	rot_mat() (in module pyllama)

 	rotate_layer() (pyllama.StackModel method)

 	rotate_layers() (pyllama.StackModel method)

 	rotate_permittivity() (pyllama.Layer static method)

S

 	
 	SlabModel (class in pyllama)

 	Spectrum (class in pyllama)

 	
 	StackModel (class in pyllama)

 	StackOpticalThicknessModel (class in pyllama)

 	Structure (class in pyllama)

W

 	
 	Wave (class in pyllama)

 	
 	waves_to_matrix() (pyllama.Wave static method)

Beginners’ tutorial

PyLlamas is a Python code that enables to calculate the reflection spectrum of multilayer stacks in a few simple steps and to export the results in Python-compatible or in MATLAB format. Not everyone is experienced in programming in general or in Python in particular, and in this tutorial we explain in a less formal way what you need to do from the very start to model simple or complex stacks without any prior Python knowledge.

If you have never used Python and are not very comfortable with programming in general, the most difficult step will be to install everything. Then, running a code and changing your parameters will be relatively easy.

How to install Python

A code is a list of instructions written in a given programming language. Your computer will interpret the instructions and perform tasks accordingly. In order for your computer to understand instructions written in Python, you need to install the Python [http://www.python.org/] interpreter from its official website: pick the “Download” menu, pick your operating system (for example Windows) and download the executable file (for example “Windows x86-64 executable installer”) for the Python version that you want.

There are several versions of Python: roughly speaking, each version corresponds to different sets of instructions that can be written by the programmer and understood by the computer. The first version of this code was written with Python 3.6. You should download Python 3.6.X where X can be any number. PyLlama will very likely work with other Python versions that start with 3.X.X but this is not guaranteed.

You also need to use an Integrated Development Interface (IDE). This is a software that will enable you to open a Python code, modify it (to change your parameters) and run it. An IDE comes with Python and is called IDLE: when you double-click on a .py file, IDLE will open it and you just have to press “Run” on the top-menu to launch the code. However, IDLE is not very handy to use and you may want to switch to JetBrain’s PyCharm [https://www.jetbrains.com/pycharm/] (there is a free version, or you can download the paid version for free if you are a student) or Anaconda’s Spyder [https://www.anaconda.com/].

Your IDE needs to know where the Python interpreter is located on your computer. This is automatic for IDLE. If you install another IDE, you might need to find tutorials on their websites to help you configure it.

How to install packages that PyLlama needs

PyLlama uses functions that are implemented in common Python packages (for example, the cosine function comes with the package NumPy). To use PyLlama, you need to install the following packages:

	NumPy version 3.18.2

	ScyPy version 1.2.1

	SymPy version 1.4

	Matplotlib version 3.2.1

Other versions may work: a package does not completely change from version to version.

The steps that you need to follow to install your packages depend on the IDE that you are using. Tutorials are available online to help beginners with the package installation.

	With IDLE (that directly comes with Python), instructions can be found on Python’s websive [https://packaging.python.org/tutorials/installing-packages/]

	With PyCharm, instructions can be found on Jetbrain’s websive [https://www.jetbrains.com/help/pycharm/installing-uninstalling-and-upgrading-packages.html#]. No command-line is required and you can do everything through the PyCharm software, including picking a specific package version.

	With Spyder, instructions can be found on Anacodna’s websive [https://docs.anaconda.com/anaconda/user-guide/tasks/install-packages/]

How to install PyLlama

The PyLlama code is stored on GitHub. You should go to its GitHub repository [https://www.google.com] and click on the download button. Then, unzip the archive and place all files in a dedicated folder.

There are several files in the archive:

	pyllama.py: the PyLlama code is a set of pre-defined sets of instructions (functions) that you can use. You don’t need to modify it and you should not run it. However, your interpreter needs to access this file to use the functions that it contains.

	cholesteric.py and geometry.py: these codes contain pre-defined instructions that are required to model cholesterics and to display 3D representations. Your interpreter also needs to access these file to use the functions that it contains if you want to model cholesterics.

	a collection of files that are named script_XXXX.py: these are examples of codes that you can run. These scripts use functions from pyllama.py in order to model different examples of stacks, for example to plot a spectrum. You can write your script from scratch or you can find one that resembles the stack that you want to model and edit it.

How to modify and run a script

How to write a script for an arbitrary stack

 _images/math/b509d494c83a69d3662416108c5ab009c1fbed7f.png
An = 005

_images/math/b51dc79199b121689b656bdadeff4fd567b5d7c1.png
E, transmitted E, incident
E, transmitted | _ ¢ | B, incident
B, reflected | — 0
E, reflected 0

_images/math/ae12a24f88803b5895632e4848d87d46483c492c.png

_images/math/b2826c4e09aa80d685aa8e8c85999febcf1add26.png
Riin

i
{Tp top
Tin =

ptop

tos

Ritop
Ritos

7‘:(0?:|
Titos

_images/math/200698fdf551671452db3226573cc8497b977ed2.png
Tentry COS(Fin)

_images/math/d47836f6c92b45c0e9c7f2578db6d19bc158fd41.png
fig = 2T/ A

_images/math/276f7e256cbddeb81eee42e1efc348f3cb4ab5f8.png

_images/math/da56a0b5b6fc7f7266d3da163429e935f5a31d89.png
V= |E;, H, £, —H;|

_images/math/06d90a29c666ad7c9318ced6d8a51afdce423fb1.png

_images/math/bd9d9c7512c898e0a254a0882184197bc1bd9c9f.png

_images/math/1101d710816b07f6604feda89484ee1bcfeea5c9.png

_images/math/d2aa27cde8b741528bd3eabd2e622a30c0a1fc29.png

_images/math/348ac944dbf2ed9baa369f970b912f6023aec8e0.png
Epo
Hyo
y,0
—H; o

By
Hya
Ey1
—H,,

Eyo
Hya
By

22

Ey 3
Hys
Y, 3

—H; 3

_images/math/3935505d70c91715a19b36a8604d6c7936c23aa2.png
Rpcporop Ricptorop
Reire = | 5 7
reptorcr RicpuoLcp

Thertoner Ticpiorcr
Trertorcr Ticpioror

_images/math/27d463da4622be5b3ef1d4176ced7d7a323c6425.png

_images/math/de7798c1bda5eca69cb337d0c84913425ea284ca.png
E, transmitted E, incident
E transmitted | _ . | By incident
0 =7 | B reflected
0 E, reflected

_images/math/331157c6afbd113256867fd408d80277d1a24756.png

_images/math/def07fab79adb693a4c9a893a441445f49db31a6.png

_images/math/3d35fe6920a69ebf7a2c1df8b5797a35fa8ccba9.png
Epreflected
ptop = oo
PP = F,incident

Ereflected

Tptos =

Eyincident

Tstop =

Tstos =

Epreflected
E,incident
Eureflected
Fsincident

_images/math/3ecf98a01dc0fb3857301d0d9cc732a33dad5b10.png

_images/script_cholesteric_example_spectra.png
Reflectance Reflectance

Intensity

Incoming RCP

1.0
—— RCP to RCP
0.5 —— RCPto LCP
00 T IA T T T T
400 450 500 550 600 650 700 750 800
Wavelength (nm)
Incoming LCP
1.0
—— LCP to RCP
0.5 —— LCPto LCP
0.0 T T _"/l‘.> T T T T
400 450 500 550 600 650 700 750 800
Wavelength (nm)
Lo Incoming unpolarised
—— reflection vav
0.5 9 —— transmission A,f—\’\‘
00 T T T T T T T
400 450 500 550 600 650 700 750 800

Wavelength (nm)

_images/structure_model_spectrum.png

_images/schematic_stack.png
Entry . Layers Exit
Mx
reflected
transmitted
> _____
b4
y
incident
z z

N-1

_images/script_cholesteric_example_3D.png

_images/math/03f9fab0914d8e85e91fd9bca025f836053aa05b.png

_images/math/eaa6ad49a7f78fe5a13b486690163bf2dc7e3e60.png

_images/math/3faa4e536ab761107bc2720a5eee4a2763f02095.png
Tptop Tstop
Tptos Tstos

_images/math/ec0e07a816f18ecf1d662efc63760fb3a3ed87c6.png

nav.xhtml

 Table of Contents

 		
 Welcome to PyLlama’s documentation!

 		
 Getting started

 		
 Overview

 		
 Code organisation

 		
 How to install

 		
 Library for cholesterics

 		
 Creating a multilayer stack

 		
 From scratch: the technical way

 		
 With the Model class: the flexible way

 		
 With the Spectrum class: the automated way

 		
 Calculating the reflection and transmission spectra of a stack

 		
 From scratch: the technical way

 		
 With the Model class: the flexible way

 		
 With the Spectrum class: the automated way

 		
 Quick cholesteric tutorial

 		
 Choosing which matrix method to use

 		
 Creating a custom Model class

 		
 Anatomy of the Model class

 		
 Creating a custom child

 		
 Pairing the custom child with Spectrum

 		
 Acknowledgements

 		
 Authors

 		
 Referencing

 		
 Financial support

_images/math/e344b19799d59a219f121307b5dc1a579709513f.png
Tptop Titop
Totos Tstos

_images/math/e763292f2acc7b68043a666d345e3bb7c4946ab5.png

_images/fig_spectra_SM_TM_EM_cropped.png
1.50
— TM
1259 .. EM
§1.oo— == SM
©
5 0.75 4
R
2 0.50 A
0.25 A
0.00 . — .
400 500 600 700

Wavelength (nm)

800

400

™

EM

SM

JLAAHM‘
500 600 700

Wavelength (nm)

_images/math/57c9d14bb082716df9000146882ce365335d08f1.png

_images/math/f4170ed8938b79490d8923857962695514a8e4cb.png

_images/schematic_Ep_Es.png
Nx
reflected

incident

N-1

transmitted

_images/math/5ec053cf70dc1c98cc297322250569eda193e7a4.png

_images/math/f505877de8ff3c9ca4807c2973df6f98f6be7c5b.png

_images/math/499a2ee48b33448e80b97af9df9550828bdbfb59.png

_images/math/edf6f3ff3caf11e53d3c38681501bee0723ec8d2.png

_images/math/5489d05456521c6672c1b3311014f040ac83fbec.png

_images/math/f1f7d6de4984879f72e0178c6acd533e6d03d337.png
Jow)

_images/math/67fdd7a5f918cbf553bf02354a7b82e8bf56eb88.png

_images/math/683f2dd9129a91d21aaf1c04afa6f78b39d4cb0a.png

_images/math/60b7a0d4b8be22a19b44975e333b9a51023b62a1.png
Trertorcr Tieporcr
Treptorcp TroPtoLop

_images/math/f6964b851eed5fbefdcc2c7ca6a11e8aad82a12f.png

_images/math/63751cb2e98ba393b0f22e45ca127c3cebb61487.png

_images/math/710bd334c6d05bb1510b2ce14b8c890657e8623a.png
TRCPtoRCP TLCPtoRCP
TRCPtoLCP TLCPto LCP.

_images/math/e230c566e5412f690f2c238835709c12e801fcf7.png

_images/math/7620f89bf8b957f4cea5b5d215d12d10ef925d47.png

_static/comment-close.png

_images/math/76f1d8ace30435987c01a00ca53a71cba1f40e6c.png

_static/comment.png

_static/comment-bright.png

_images/math/79742e4e2a711ab139456b1ace112b462876ed64.png

_images/math/7e23241a5e1616cf3a9dc5a5669001fc3cd00acc.png

_static/file.png

_images/math/7907062a1bee42c9b18802ffe6565a84434d98eb.png
Eptransmitted Eptransmitted

tptop = tytop = —E—

ptop Epincident tor E,incident
¢ _ Ejtransmitted _ Estransmitted
Ptos = o ncident °°°" Ejincident

_static/down-pressed.png

_images/math/7938bf9465c5d6bcbc453c46eca09132d6d8721a.png
Rptop Ritop
Rptos Rstos

_static/down.png

_images/math/872fe0d771d0e8c10955cd845defe0f5241b3a40.png

_images/math/8abbeef43a728c2ee7a70172ecb6c1915d00487e.png
reire — | ROPto RCP
TRCPtoLCP

t trRCPto RCP
tRCPto LCP

TLOPto mv}

TLCPto LOP,

tLopto RCP

tLeptoLOP.

|

_images/math/8451db2e227965f24b66916acea508ac2d270f0b.png
Hentry

_images/math/8668ca1b7689b7ecc36a75e0c9d189b3de0a5606.png
K; = Nepiry sin(by,)

_images/math/ff13b068e7cb4e982143582d90033ed479a2f4b9.png
Rpoptorcr Ricporcr
Rreptorcp Rrcpiorep

_static/ajax-loader.gif

_images/math/8ef75ef51b9c878bd8a447092a1255bd26a540ec.png

_static/up.png

_images/math/92bdefdf923a241caf6b914751999aafaacd4dbf.png
treptorRCP tLCPtoROP
trePoLeP tLOPtoLOP.

_images/math/8c667b4176302e6bb1603967b6253a56fa6eedb2.png

_static/up-pressed.png

_images/math/a00254b18ffa992f0ef19f6e6e095b83c8f85e94.png

_images/math/a59f68a4202623bb859a7093f0316bf466e6f75d.png

_images/math/99fbe6d341e9f42ef4313c031380425777c03db8.png

_images/math/9dcbbef8e0f76051d388013b90a95bec3069e484.png

_images/math/abe16bebfaf032bba0b6ab467efed72059739e7a.png

_images/math/a5b4df8188f6c346dc2bde4137414e60a68495a2.png
Tsto p}
Tstos

tito p}
tytos

_images/math/a8bda0ee635ade54011781c91681b5ba4b152dfb.png
tptop tstop
tptos tstos

_static/minus.png

_static/plus.png

_static/logo.png
/ NAN AN,

A=

clillel |
)

N7

H“‘
\
N
=

